• Title/Summary/Keyword: domesticated gene

Search Result 25, Processing Time 0.024 seconds

Identification and Characterization of New Copia-like Retrotransposon Osr1 in Rice

  • Lee, Yong-Hwan;Jwa, Nam-Soo;Park, Sook-Young;Park, Chan-Ho;Han, Seong-Sook
    • The Plant Pathology Journal
    • /
    • v.19 no.1
    • /
    • pp.57-63
    • /
    • 2003
  • An insertion sequence identified as a solo long terminal repeat (LTR) of a new rice copia-like retrotransposon was detected in the ORE of the Pi-b gene from the rice cv. Nipponbare, and was designated as Osr1. Osr1 consists of a 6386 bp nucleotide sequence including 965 bp LTRs on both ends with an 82% nucleotide sequence identity to the wheat Tarl retrotransposon on reverse transcriptase. Nucleotide divergence was noted among the individual LTRs, as well as the coding region of Osr1. Various restriction fragment length polymorphism (RFLP) of LTR were detected in indica cultivars, whereas, only a few could be detected in the japonica cultivars. The population of Osr1 is lower in the wild-type rice compared with that in the domesticated cultivars. The insertion of LTR sequence in the h-b gene in the susceptible cultivar suggested that retro-tyansposon-mediated insertional mutation might play an important role in the resistance breakdown, as well as in the evolution of resistance genes in rice.

Evaluating Viability of IVP Embryos

  • Bavister, Barry D.
    • Proceedings of the KSAR Conference
    • /
    • 2001.10a
    • /
    • pp.44-46
    • /
    • 2001
  • In vitro produced (IVP) embryos produced by in vitro fertilization (IVF) often exhibit wide variations in developmental competence and viability, considerably more than are exhibited by embryos that develop in vivo. These anomalies in IVP embryos may be due to heterogeneity of oocyte quality, suboptimal culture conditions, disturbances in gene expression, or most likely a combination of these factors (Ho et al., 1994; Roth et al., 1994; McKiernan and Bavister, 1998; Hasler, 1998; Schramm and Bavister, 1999; Doherty et al., 2000; Hyttel et al., 2000; Niemann and Wrenzycki, 2000; Wrenzycki et al., 2001). In research studies or in clinical applications with domesticated animals, cats, non-human primates and humans, oocytes used for IVF are usually collected from a heterogeneous cohort of ovarian follicles that include oocytes which normally might not be ovulated and/or are deficient in developmental competence. (omitted)

  • PDF

Are Current Aspergillus sojae Strains Originated from a Native Aflatoxigenic Aspergillus Species Population Also Present in California?

  • Perng-Kuang Chang;Sui Sheng T. Hua
    • Mycobiology
    • /
    • v.51 no.3
    • /
    • pp.139-147
    • /
    • 2023
  • Aspergillus sojae has long been considered a domesticated strain of Aspergillus parasiticus. This study delineated relationships among the two species and an Aspergillus PWE36 isolate. Of 25 examined clustered aflatoxin genes of PWE36, 20 gene sequences were identical to those of A. sojae, but all had variations to those of A. parasiticus. Additionally, PWE36 developmental genes of conidiation and sclerotial formation, overall, shared higher degrees of nucleotide sequence identity with A. sojae genes than with A. parasiticus genes. Examination of defective cyclopiazonic acid gene clusters revealed that the PWE36 deletion pattern was identical only to those of A. sojae. Using A. sojae SMF134 genome sequence as a reference, visualization of locally collinear blocks indicated that PWE36 shared higher genome sequence homologies with A. sojae than with A. parasiticus. Phylogenetic inference based on genome-wide single nucleotide polymorphisms (SNPs) and total SNP counts showed that A. sojae strains formed a monophyletic clade and were clonal. Two (Argentinian and Ugandan) A. parasiticus isolates but not including an Ethiopian isolate formed a monophyletic clade, which showed that A. parasiticus population is genetically diverse and distant to A. sojae. PWE36 and A. sojae shared a most recent common ancestor (MRCA). The estimated divergence time for PWE36 and A. sojae was about 0.4 mya. Unlike Aspergillus oryzae, another koji mold that includes genetically diverse populations, the findings that current A. sojae strains formed a monophyletic group and shared the MRCA with PWE36 allow A. sojae to be continuously treated as a species for food safety reasons.

Genetic Insights into Domestication Loci Associated with Awn Development in Rice

  • Ngoc Ha Luong;Sangshetty G. Balkunde;Kyu-Chan Shim;Cheryl Adeva;Hyun-Sook Lee;Hyun-Jung Kim;Sang-Nag Ahn
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.33-33
    • /
    • 2022
  • Rice (Oryza sativa L.) is a widely studied domesticated model plant. Seed awning is an unfavorable trait during rice harvesting and processing. Hence, awn was one of the target characters selected during domestication. However, the genetic mechanisms underlying awn development in rice are not well understood. In this study, we analyzed the genes for awn development using a mapping population derived from a cross between the Korean indica cultivar 'Milyang23' and NIL4/9 (derived from a cross between 'Hwaseong' and O. minuta). Two quantitative trait loci (QTLs), qAwn4 and qAwn9 were mapped on chromosome 4 and 9, respectively, increased awn length in an additive manner. Through comparative sequencing analyses parental lines, LABA1 was determined as the causal gene underlying qAwn4. qAwn9 was mapped to a 199-kb physical region between markers RM24663 and RM24679. Within this interval, 27 annotated genes were identified, and five genes, including a basic leucine zipper transcription factor 76 (OsbZIP76), were considered candidate genes for qAwn9 based on their functional annotations and sequence variations. Haplotype analysis using the candidate genes revealed tropical japonica specific sequence variants in the qAwn9 region, which partly explains the non-detection of qAwn9 in previous studies that used progenies from interspecific crosses. This provides further evidence that OsbZIP76 is possibly a causal gene for qAwn9. The O. minuta qAwn9 allele was identified as a major QTL associated with awn development in rice, providing an important molecular target for basic genetic research and domestication studies. Our results lay the foundation for further cloning of the awn gene underlying qAwn9.

  • PDF

Biochemical characterization and PFGE pattern of Brucella canis isolated from kennels in Gyoengbuk province (경북지역 애견 번식장에서 분리한 Brucella canis의 생화학적특성 및 PFGE 양상)

  • Kim, Seong-Guk;Kim, Young-Hoan;Hong, Hyon-Pyo;Eom, Hyun-Jung;Jang, Seong-Jun;Jo, Min-Hee;Lee, Yang-Soo
    • Korean Journal of Veterinary Service
    • /
    • v.30 no.3
    • /
    • pp.363-374
    • /
    • 2007
  • A biochemical characterization and antimicrobial drugs susceptibility study was conducted in four breeding kennel which was canine abortion caused by Brucella canis in Gyeongbuk province in 2003-2006. Total of 267 dogs domesticated in the four kennel were examination. Among them, 143 (53.6%) dogs were sero-positive and 25 of blood samples were isolated to Brucella canis. At amplification of 35KDa-BCSP gene using PCR, 711 bp DNA fragment was same visible in 25 isolates and B canis RM6/66. Biochemical characterization of B canis isolated was non-hemolytic, no production of $H_2S$, no fermentation of carbohydrates, catalase-positive, oxidase-positive, indol-negative, hydrolyzation of urea, reduction of nitrate and development of thionin dye medium. Using disk-diffusion method, all of 25 strains tested were found to be highly susceptible to tetracycline, aminoglycoside, quinolone, macrolide antibiotics, rifampin and ampicillin in vitro. Using PFGE with restriction enzyme Smi I, 25 isolates tested were typed to 2 pattern, S1 and S2.

Identification of SNPs tightly linked to the QTL for pod shattering in soybean[Glycine max (L.) Merr.]

  • Kim, Kyung-Ryun;Kim, Kyung Hye;Go, Hong Min;Lee, Ju Seok;Moon, Jung-Kyung;Ha, Bo-Keun;Jeong, Soon-Chun;Kim, Namshin;Kang, Sungtaeg
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.146-146
    • /
    • 2017
  • The pod shattering or dehiscence is essential for the propagation of pod-bearing plant species in the wild, but it causes significant yield losses during harvest of domesticated crop plants. Identifying novel molecular makers, which are linked to seed-shattering genes, is needed to employ the molecular marker-assisted selection for efficiently developing shattering-resistant soybean varieties. In this study, a genetic linkage map was constructed using 115 recombinant inbred lines (RILs) developed from crosses between the pod shattering susceptible variety, Keunol, and resistant variety, Sinpaldal. A 180 K Axiom(R) SoyaSNPs data and pod shattering data from two environments in 2001 and 2015 were used to identify quantitative trait loci (QTL) for pod shattering. A major QTL was identified between two flanking single nucleotide polymorphism (SNP) markers, AX-90320801 and AX-90306327 on chromosome 16 with 1.3 cM interval, 857 kb of physical range. In sequence, genotype distribution analysis was conducted using extreme phenotype RILs. This could narrow down the QTL down to 153 kb on the physical map and was designated as qPDH1-KS with 6 annotated gene models. All exons within qPDH1-KS were sequenced and the 6 polymorphic SNPs affecting the amino acid sequence were identified. To develop universally available molecular markers, 38 Korean soybean cultivars were investigated by the association study using the 6 identified SNPs. Only two SNPswere strongly associated with the pod shattering. These two identified SNPs will help to identify the pod shattering responsible gene and to develop pod shattering-resistant soybean plants using marker-assisted selection.

  • PDF

Population genetic variations of the matrix metalloproteinases-3 gene revealed hypoxia adaptation in domesticated yaks (Bos grunniens)

  • Ding, Xuezhi;Yang, Chao;Bao, Pengjia;Wu, Xiaoyun;Pei, Jie;Yan, Ping;Guo, Xian
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.12
    • /
    • pp.1801-1808
    • /
    • 2019
  • Objective: As an iconic symbol of Qinghai-Tibetan Plateau and of high altitude, yak are subjected to hypoxic conditions that challenge aerobic metabolism. Matrix metalloproteinases-3 (MMP3) is assumed to be a key target gene of hypoxia-inducible factor-$1{\alpha}$ that function as a master regulator of the cellular response to hypoxia. Therefore, the aim of this investigation was to identify the DNA polymorphism of MMP3 gene in domestic yak and to explore its possible association with high-altitude adaptation. Methods: The single-nucleotide polymorphisms (SNPs) genotyping and mutations scanning at the MMP3 locus were conducted in total of 344 individuals from four domestic Chinese yak breeds resident at different altitudes on the Qinghai-Tibetan Plateau, using high-resolution melting analysis and DNA sequencing techniques. Results: The novel of SNPs rs2381 $A{\rightarrow}G$ and rs4331 $C{\rightarrow}G$ were identified in intron V and intron VII of MMP3, respectively. Frequencies of the GG genotype and the G allele of SNP rs2381 $A{\rightarrow}G$ observed in high-altitude Pali yak were significantly higher than that of the other yak breeds resident at middle or low altitude (p<0.01). No significant difference was mapped for SNP rs4331 $C{\rightarrow}G$ in the yak population (p>0.05). Haplotype GC was the dominant among the 4 yak breeds, and Pearson correlation analysis showed that the frequencies of GC was significantly lower in Ganan (GN), Datong (DT), and Tianzhu white yaks (TZ) compared with Pali (PL) yak. The two SNPs were in moderate linkage disequilibrium in high-altitude yaks (PL) but not in middle-altitude (GN, DT) and low-altitude (TZ) yaks. Conclusion: These results indicate that MMP3 may have been subjected to positive selection in yak, especially that the SNP rs2381 $A{\rightarrow}G$ mutation and GC haplotypes might contribute to adaptation for yak in high-altitude environments.

Analysis of the Genome Sequence of Strain GiC-126 of Gloeostereum incarnatum with Genetic Linkage Map

  • Jiang, Wan-Zhu;Yao, Fang-Jie;Fang, Ming;Lu, Li-Xin;Zhang, You-Min;Wang, Peng;Meng, Jing-Jing;Lu, Jia;Ma, Xiao-Xu;He, Qi;Shao, Kai-Sheng;Khan, Asif Ali;Wei, Yun-Hui
    • Mycobiology
    • /
    • v.49 no.4
    • /
    • pp.406-420
    • /
    • 2021
  • Gloeostereum incarnatum has edible and medicinal value and was first cultivated and domesticated in China. We sequenced the G. incarnatum monokaryotic strain GiC-126 on an Illumina HiSeq X Ten system and obtained a 34.52-Mb genome assembly sequence that encoded 16,895 predicted genes. We combined the GiC-126 genome with the published genome of G. incarnatum strain CCMJ2665 to construct a genetic linkage map (GiC-126 genome) that had 10 linkage groups (LGs), and the 15 assembly sequences of CCMJ2665 were integrated into 8 LGs. We identified 1912 simple sequence repeat (SSR) loci and detected 700 genes containing 768 SSRs in the genome; 65 and 100 of them were annotated with gene ontology (GO) terms and KEGG pathways, respectively. Carbohydrate-active enzymes (CAZymes) were identified in 20 fungal genomes and annotated; among them, 144 CAZymes were annotated in the GiC-126 genome. The A mating-type locus (MAT-A) of G. incarnatum was located on scaffold885 at 38.9 cM of LG1 and was flanked by two homeodomain (HD1) genes, mip and beta-fg. Fourteen segregation distortion markers were detected in the genetic linkage map, all of which were skewed toward the parent GiC-126. They formed three segregation distortion regions (SDR1-SDR3), and 22 predictive genes were found in scaffold1920 where three segregation distortion markers were located in SDR1. In this study, we corrected and updated the genomic information of G. incarnatum. Our results will provide a theoretical basis for fine gene mapping, functional gene cloning, and genetic breeding the follow-up of G. incarnatum.

Comparison of characteristics of long noncoding RNA in Hanwoo according to sex

  • Choi, Jae-Young;Won, KyeongHye;Son, Seungwoo;Shin, Donghyun;Oh, Jae-Don
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.5
    • /
    • pp.696-703
    • /
    • 2020
  • Objective: Cattle were some of the first animals domesticated by humans for the production of milk, meat, etc. Long noncoding RNA (lncRNA) is defined as longer than 200 bp in nonprotein coding transcripts. lncRNA is known to function in regulating gene expression and is currently being studied in a variety of livestock including cattle. The purpose of this study is to analyze the characteristics of lncRNA according to sex in Hanwoo cattle. Methods: This study was conducted using the skeletal muscles of 9 Hanwoo cattle include bulls, steers and cows. RNA was extracted from skeletal muscle of Hanwoo. Sequencing was conducted using Illumina HiSeq2000 and mapped to the Bovine Taurus genome. The expression levels of lncRNAs were measured by DEGseq and quantitative trait loci (QTL) data base was used to identify QTLs associated with lncRNA. The python script was used to match the nearby genes Results: In this study, the expression patterns of transcripts of bulls, steers and cows were identified. And we identified significantly differentially expressed lncRNAs in bulls, steers and cows. In addition, characteristics of lncRNA which express differentially in muscles according to the sex of Hanwoo were identified. As a result, we found differentially expressed lncRNAs according to sex were related to shear force and body weight. Conclusion: This study was classified and characterized lncRNA which differentially expressed by sex in Hanwoo cattle. We believe that the characterization of lncRNA by sex of Hanwoo will be helpful for future studies of the physiological mechanisms of Hanwoo cattle.

Detecting Positive Selection of Korean Native Goat Populations Using Next-Generation Sequencing

  • Lee, Wonseok;Ahn, Sojin;Taye, Mengistie;Sung, Samsun;Lee, Hyun-Jeong;Cho, Seoae;Kim, Heebal
    • Molecules and Cells
    • /
    • v.39 no.12
    • /
    • pp.862-868
    • /
    • 2016
  • Goats (Capra hircus) are one of the oldest species of domesticated animals. Native Korean goats are a particularly interesting group, as they are indigenous to the area and were raised in the Korean peninsula almost 2,000 years ago. Although they have a small body size and produce low volumes of milk and meat, they are quite resistant to lumbar paralysis. Our study aimed to reveal the distinct genetic features and patterns of selection in native Korean goats by comparing the genomes of native Korean goat and crossbred goat populations. We sequenced the whole genome of 15 native Korean goats and 11 crossbred goats using next-generation sequencing (Illumina platform) to compare the genomes of the two populations. We found decreased nucleotide diversity in the native Korean goats compared to the crossbred goats. Genetic structural analysis demonstrated that the native Korean goat and cross-bred goat populations shared a common ancestry, but were clearly distinct. Finally, to reveal the native Korean goat's selective sweep region, selective sweep signals were identified in the native Korean goat genome using cross-population extended haplotype homozygosity (XP-EHH) and a cross-population composite likelihood ratio test (XP-CLR). As a result, we were able to identify candidate genes for recent selection, such as the CCR3 gene, which is related to lumbar paralysis resistance. Combined with future studies and recent goat genome information, this study will contribute to a thorough understanding of the native Korean goat genome.