Browse > Article
http://dx.doi.org/10.1080/12298093.2021.1954321

Analysis of the Genome Sequence of Strain GiC-126 of Gloeostereum incarnatum with Genetic Linkage Map  

Jiang, Wan-Zhu (International Cooperation Research Center of China for New Germplasm Breeding of Edible Mushrooms, Jilin Agricultural University)
Yao, Fang-Jie (International Cooperation Research Center of China for New Germplasm Breeding of Edible Mushrooms, Jilin Agricultural University)
Fang, Ming (College of Horticulture, Jilin Agricultural University)
Lu, Li-Xin (College of Horticulture, Jilin Agricultural University)
Zhang, You-Min (College of Horticulture, Jilin Agricultural University)
Wang, Peng (Economic Plants Research Institute, Jilin Academy of Agricultural Sciences)
Meng, Jing-Jing (College of Horticulture, Jilin Agricultural University)
Lu, Jia (International Cooperation Research Center of China for New Germplasm Breeding of Edible Mushrooms, Jilin Agricultural University)
Ma, Xiao-Xu (International Cooperation Research Center of China for New Germplasm Breeding of Edible Mushrooms, Jilin Agricultural University)
He, Qi (International Cooperation Research Center of China for New Germplasm Breeding of Edible Mushrooms, Jilin Agricultural University)
Shao, Kai-Sheng (College of Horticulture, Jilin Agricultural University)
Khan, Asif Ali (International Cooperation Research Center of China for New Germplasm Breeding of Edible Mushrooms, Jilin Agricultural University)
Wei, Yun-Hui (Institute of Agricultural Applied Microbiology, Jiangxi Academy of Agricultural Sciences)
Publication Information
Mycobiology / v.49, no.4, 2021 , pp. 406-420 More about this Journal
Abstract
Gloeostereum incarnatum has edible and medicinal value and was first cultivated and domesticated in China. We sequenced the G. incarnatum monokaryotic strain GiC-126 on an Illumina HiSeq X Ten system and obtained a 34.52-Mb genome assembly sequence that encoded 16,895 predicted genes. We combined the GiC-126 genome with the published genome of G. incarnatum strain CCMJ2665 to construct a genetic linkage map (GiC-126 genome) that had 10 linkage groups (LGs), and the 15 assembly sequences of CCMJ2665 were integrated into 8 LGs. We identified 1912 simple sequence repeat (SSR) loci and detected 700 genes containing 768 SSRs in the genome; 65 and 100 of them were annotated with gene ontology (GO) terms and KEGG pathways, respectively. Carbohydrate-active enzymes (CAZymes) were identified in 20 fungal genomes and annotated; among them, 144 CAZymes were annotated in the GiC-126 genome. The A mating-type locus (MAT-A) of G. incarnatum was located on scaffold885 at 38.9 cM of LG1 and was flanked by two homeodomain (HD1) genes, mip and beta-fg. Fourteen segregation distortion markers were detected in the genetic linkage map, all of which were skewed toward the parent GiC-126. They formed three segregation distortion regions (SDR1-SDR3), and 22 predictive genes were found in scaffold1920 where three segregation distortion markers were located in SDR1. In this study, we corrected and updated the genomic information of G. incarnatum. Our results will provide a theoretical basis for fine gene mapping, functional gene cloning, and genetic breeding the follow-up of G. incarnatum.
Keywords
Gloeostereum incarnatum; simple sequence repeat; carbohydrate-active enzymes; genetic linkage map; mating-type;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wang Y, Chen MJ, Wang H, et al. Microsatellites in the genome of the edible mushroom, Volvariella volvacea. BioMed Res Int. 2014;2014:28912.
2 Riley R, Salamov AA, Brown DW, et al. Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proc Natl Acad Sci USA. 2014;111(27):9923-9928.   DOI
3 James TY, Srivilai P, Kues U, Vilgalys, et al. Evolution of the bipolar mating system of the mushroom Coprinellus disseminatus from its tetrapolar ancestors involves loss of mating-type-specific pheromone receptor function. Genetics. 2006; 172(3):1877-1891.   DOI
4 Van Peer AF, Park SY, Shin PG, et al. Comparative genomics of the mating-type loci of the mushroom Flammulina velutipes reveals widespread synteny and recent inversions. PLoS One. 2011;6(7):e22249.   DOI
5 Au CH, Wong MC, Bao DP, et al. The genetic structure of the A mating-type locus of Lentinula edodes. Gene. 2014;535(2):184-190.   DOI
6 Casselton LA, Asante-Owusu RN, Banham AH, et al. Mating type control of sexual development in Coprinus cinereus. Can J Bot. 1995;73(S1): 266-272.   DOI
7 Liu HY, Cui JT, Gao YM. Progress of segregation distortion. J Plant Genet Res. 2009;10:613-617.
8 Liu ZF, Zhu ZP, Huang DR, et al. Genetic analysis on segregation distortion of molecular markers in F2 population of C. Moschata Duch. Mol Plant Breed. 2019;17:3993-3999.
9 Gao YL, He D, Wei YY, et al. Research progress on fungal genetic methods. J Fungal Res. 2019;17: 173-179.
10 Yu Y, Yao FJ, Zhang YM. A new Gloeostereum incarnatum cultivar 'Jirou 1. Acta Horticulturae Sin. 2016;43:1013-1014.
11 Chen SL, Xu J, Liu C, et al. Genome sequence of the model medicinal mushroom Ganoderma lucidum. Nat Commun. 2012;3:913.   DOI
12 Cao Y, Zhang YZ, Cheng SJ, et al. Genome-wide distributional and comparative analysis of SSR loci in Trametes versicolor. Mycosystema. 2017;36: 1524-1542.
13 Wang P, Yao FJ, Lu LX, et al. Map-based cloning of genes encoding key enzymes for pigment synthesis in Auricularia cornea. Fungal Biol. 2019; 123(11):843-853.   DOI
14 Yao FJ, Lu LX, Wang P, et al. Development of a molecular marker for fruiting body pattern in Auricularia auricula-judae. Mycobiology. 2018;49: 72-78.
15 Au CH, Wong MC, Qin J, et al. Genome sequence and genetic linkage analysis of Shiitake mushroom Lentinula edodes. Nat Prec. 2012. DOI:10.1038/npre.2012.6855.1   DOI
16 Yuan Y, Wu F, Si J, et al. Whole genome sequence of Auricularia heimuer (Basidiomycota, Fungi), the third most important cultivated mushroom worldwide. Genomics. 2019;111:50-58.   DOI
17 Park YJ, Baek JH, Lee S, et al. Whole genome and global gene expression analyses of the model mushroom Flammulina velutipes reveal a high capacity for lignocellulose degradation. PLoS One. 2014;9(4):e93560.   DOI
18 Li X, Liu X, Zhang YF, et al. Protective effect of Gloeostereum incarnatum on ulcerative colitis via modulation of Nrf2/NF-κB signaling in C57BL/6 mice. Mol Med Rep. 2020;22(4):3418-3428.
19 James TY, Lee M, van Diepen LTA. A Single Mating-Type Locus Composed of Homeodomain genes promotes nuclear migration and heterokaryosis in the white-rot fungus Phanerochaete chrysosporium. Eukaryot Cell. 2011;10(2):249-261.   DOI
20 Eid J, Fehr A, Gray J, et al. Real-time DNA sequencing from single polymerase molecules. Science. 2009;323(5910):133-138.   DOI
21 Song H, Yao FJ, Tang J, et al. Research overview of Gloeostereum incarnatum. Chin Edible Fungi. 2008;27:3-4.
22 Jiang WZ, Yao FJ, Lu LX, et al. Genetic linkage map construction and quantitative trait loci mapping of agronomic traits in Gloeostereum incarnatum. J Microbiol. 2021;59(1):41-50.   DOI
23 Boeckmann B, Bairoch AM, Apweiler R, et al. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 2003;31(1):365-370.   DOI
24 Murat C, Riccioni C, Belfiori B, et al. Distribution and localization of microsatellites in the Perigord black truffle genome and identification of new molecular markers. Fungal Genet Biol. 2011;48(6): 592-601.   DOI
25 Zhang ZF, Lv GY, Jiang X, et al. Extraction optimization and biological properties of a polysaccharide isolated from Gleoestereum incarnatum. Carbohydr Polym. 2015;117:185-191.   DOI
26 Watanabe M, Lee K, Goto K, et al. Rapid and effective DNA extraction method with bead grinding for a large amount of fungal DNA. J Food Prot. 2010;73(6):1077-1084.   DOI
27 Wang D, Li Q, Qu YD, et al. The investigation of immunomodulatory activities of Gloeostereum incaratum polysaccharides in cyclophosphamide-induced immunosuppression mice. Exp Ther Med. 2018;15(4):3633-3638.
28 Yu Y, Yao FJ, Sun ML, et al. A new Gloeostereum incarnatum cultivar 'Qirou 1. Acta Horticulturae Sin. 2013;40:15-15.
29 Li YT, Song H, Li YQ, et al. Study on antioxidant properties of alcohol extract of Gleoeostereum incarnatum fermentation. J Fungal Res. 2010;8: 90-92.
30 Sonnenberg AS, Gao W, Lavrijssen B, et al. A detailed analysis of the recombination landscape of the button mushroom Agaricus bisporus var. bisporus. Fungal Genet Biol. 2016;93:35-45.   DOI
31 Qian J, Xu HB, Song JY, et al. Genome-wide analysis of simple sequence repeats in the model medicinal mushroom Ganoderma lucidum. Gene. 2013;512(2):331-336.   DOI
32 Bau T, Lu T. Advance of macro-fungal genomes Ssquencing. J Fungal Res. 2017;15:151-165.
33 Bao DP, Gong M, Zheng HJ, et al. Sequencing and comparative analysis of the straw mushroom (Volvariella volvacea) genome. PLOS One. 2013; 8(3):e58294.   DOI
34 Qu JB, Huang CY, Zhang JX. Genome-wide functional analysis of SSR for an edible mushroom Pleurotus ostreatus. Gene. 2016;575(2 Pt 2): 524-530.   DOI
35 Kanehisa M, Goto S, Hattori M, et al. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res. 2006;34(90001): D354-D357.   DOI
36 Zhang H, Yohe T, Huang L, et al. dbCAN2: A meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018; 46(W1):W95-W101.   DOI
37 Fang M, Wang XE, Chen Y, et al. Genome sequence analysis of Auricularia heimuer combined with genetic linkage map. J Fungi. 2020;6(1):37.   DOI
38 Zhang Y, Huang CY, Gao W. Research advances on molecular mushroom breeding. J Fungal Res. 2019;17:229-239.
39 Lu LX, Yao FJ, Wang P, et al. Construction of a genetic linkage map and QTL mapping of agronomic traits in Auricularia auricula-judae. J Microbiol. 2017;55(10):792-799.   DOI
40 Wang XX, Peng JY, Sun L, et al. Genome sequencing illustrates the genetic basis of the pharmacological properties of Gloeostereum incarnatum. Genes. 2019;10(3):188.   DOI
41 Yu Y, Yao FJ, Sun ML, et al. Spring and autumn cultivation management technology of Gloeostereum incarnatum. Northern Horticulture. 2013;10:145-146.
42 Choi YW, Hyde KD, Ho WWH. Single spore isolation of fungi. Fungal Divers. 1999;3:29-38.
43 Borodovsky M, Lomsadze A. Eukaryotic gene prediction using GeneMark.hmm-E and GeneMark-ES. Curr Protocols Bioinform. 2011;4:1-10.
44 Bakkeren G, Kronstad JW. Linkage of mating-type loci distinguishes bipolar from tetrapolar mating in basidiomycetous smut fungi. Proc Natl Acad Sci USA. 1994;91(15):7085-7089.   DOI
45 Lombard V, Golaconda Ramulu H, Drula E, et al. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42:D490-D495.
46 Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25(1):25-29.   DOI
47 Kanehisa M, Goto S, Kawashima S, et al. The KEGG resource for deciphering the genome. Nucleic Acids Res. 2004;32(90001):277D-2280.
48 Untergasser A, Cutcutache I, Koressaar T, et al. Primer3-new capabilities and interfaces. Nucleic Acids Res. 2012;40(15):e115-e115.
49 Van Ooijen J, Voorrips R. JoinMap 4.0: Software for the calculation of genetic linkage maps in experimental populations. 2006; Kyazma BV, Wageningen.
50 Yi R, Tachikawa T, Mukaiyama H, Mochida, et al. DNA-mediated transformation system in a bipolar basidiomycete, Pholiota microspora (P. nameko). Mycoscience. 2009;50(2):123-129.   DOI
51 Specht CA, Stankis MM, Giasson L, et al. Functional analysis of the homeodomain related proteins of the A alpha locus of Schizophyllum commune. Proc Natl Acad Sci USA. 1992;89(15): 7174-7178.   DOI
52 Chen BZ, Gui F, Xie BG, et al. Composition and expression of genes encoding carbohydrate-active enzymes in the straw-degrading mushroom Volvariella volvacea. PLos One. 2013;8(3):e58780.   DOI
53 Wang DD, Li LQ, Ma LY, et al. Progress in development and applications of SSR molecular marker in macrofungi. Microbiology. 2013;40:646-654.
54 Floudas D, Binder D, Riley R, et al. The paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science. 2012; 336(6089):1715-1719.   DOI
55 Liu DB, Gong J, Dai WK, et al. The genome of Ganderma lucidum provide insights into triterpense biosynthesis and wood degradation. PLos One. 2012;7(5):e36146.   DOI