• Title/Summary/Keyword: domain-specificity

Search Result 125, Processing Time 0.024 seconds

Predicting tissue-specific expressions based on sequence characteristics

  • Paik, Hyo-Jung;Ryu, Tae-Woo;Heo, Hyoung-Sam;Seo, Seung-Won;Lee, Do-Heon;Hur, Cheol-Goo
    • BMB Reports
    • /
    • v.44 no.4
    • /
    • pp.250-255
    • /
    • 2011
  • In multicellular organisms, including humans, understanding expression specificity at the tissue level is essential for interpreting protein function, such as tissue differentiation. We developed a prediction approach via generated sequence features from overrepresented patterns in housekeeping (HK) and tissue-specific (TS) genes to classify TS expression in humans. Using TS domains and transcriptional factor binding sites (TFBSs), sequence characteristics were used as indices of expressed tissues in a Random Forest algorithm by scoring exclusive patterns considering the biological intuition; TFBSs regulate gene expression, and the domains reflect the functional specificity of a TS gene. Our proposed approach displayed better performance than previous attempts and was validated using computational and experimental methods.

Development and Application of Protein-Protein interaction Prediction System, PreDIN (Prediction-oriented Database of Interaction Network)

  • 서정근
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2002.06a
    • /
    • pp.5-23
    • /
    • 2002
  • Motivation: Protein-protein interaction plays a critical role in the biological processes. The identification of interacting proteins by bioinformatical methods can provide new lead In the functional studies of uncharacterized proteins without performing extensive experiments. Results: Protein-protein interactions are predicted by a computational algorithm based on the weighted scoring system for domain interactions between interacting protein pairs. Here we propose potential interaction domain (PID) pairs can be extracted from a data set of experimentally identified interacting protein pairs. where one protein contains a domain and its interacting protein contains the other. Every combinations of PID are summarized in a matrix table termed the PID matrix, and this matrix has proposed to be used for prediction of interactions. The database of interacting proteins (DIP) has used as a source of interacting protein pairs and InterPro, an integrated database of protein families, domains and functional sites, has used for defining domains in interacting pairs. A statistical scoring system. named "PID matrix score" has designed and applied as a measure of interaction probability between domains. Cross-validation has been performed with subsets of DIP data to evaluate the prediction accuracy of PID matrix. The prediction system gives about 50% of sensitivity and 98% of specificity, Based on the PID matrix, we develop a system providing several interaction information-finding services in the Internet. The system, named PreDIN (Prediction-oriented Database of Interaction Network) provides interacting domain finding services and interacting protein finding services. It is demonstrated that mapping of the genome-wide interaction network can be achieved by using the PreDIN system. This system can be also used as a new tool for functional prediction of unknown proteins.

  • PDF

Analytic Model Development for Fashion Designer's Creativity - Centered on Perspectives of M. Csikszentimihalyi & H. Gardener - (패션디자이너의 창의성 분석 모형 개발 - 칙센트미하이와 가드너의 관점을 중심으로 -)

  • Lee, MinSun;Kim, Min-ja
    • Journal of the Korean Society of Costume
    • /
    • v.65 no.4
    • /
    • pp.137-153
    • /
    • 2015
  • This paper aims at developing an analytic model for examining fashion designer's creativity. This research developed the analytic model of fashion designer's creativity adding the specificity of the fashion area to The Systems Model of Creativity by Csikszentmihalyi & Gardener. The analytic model of fashion designer's creativity is composed of 3 elements: the fashion designer, the fashion domain and the fashion field. The detail factors to be examined by each of the elements are as follows. In the dimension of an individual fashion designer, detail factors influencing the manifestation of creativity contain cognitive and non-cognitive abilities (i.e: personality traits, erotic capital) and socio-psychological factors (i.e: family condition, sexual identity, marital status, health). In the dimension of the fashion domain, creativity factors are composed of socio-cultural contexts and paradigms. In the dimension of the fashion field, detail factors refer to a mentor, supporter, competitor and a follower. Fashion designer's creativity manifests itself when detail factors of an individual fashion designer, fashion domain and field interact with each other dynamically.

Bi-functional Activities of Chimeric Lysozymes Constructed by Domain Swapping between Bacteriophage T7 and K11 Lysozymes

  • Alcantara, Ethel H.;Kim, Dong-Hee;Do, Su-Il;Lee, Sang-Soo
    • BMB Reports
    • /
    • v.40 no.4
    • /
    • pp.539-546
    • /
    • 2007
  • The lysozymes encoded by bacteriophage T7 and K11 are both bifunctional enzymes sharing an extensive sequence homology (75%). The constructions of chimeric lysozymes were carried out by swapping the N-terminal and C-terminal domains between phage T7 and K11 lysozymes. This technique generated two chimeras, T7K11-lysozyme (N-terminal T7 domain and C-terminal K11 domain) and K11T7-lysozyme (N-terminal K11 domain and C-terminal T7 domain), which are both enzymatically active. The amidase activity of T7K11-lysozyme is comparable with the parental enzymes while K11T7-lysozyme exhibits an activity that is approximately 45% greater than the wild-type lysozymes. Moreover, these chimeric constructs have optimum pH of 7.2-7.4 similar to the parental lysozymes but exhibit greater thermal stabilities. On the other hand, the chimeras inhibit transcription comparable with the parental lysozymes depending on the source of their N-terminals. Taken together, our results indicated that domain swapping technique localizes the N-terminal region as the domain responsible for the transcription inhibition specificity of the wild type T7 and K11 lysozymes. Furthermore, we were able to develop a simple and rapid purification scheme in purifying both the wild-type and chimeric lysozymes.

Biochemical characteristics of functional domains using feline foamy virus integrase mutants

  • Yoo, Gwi-Woong;Shin, Cha-Gyun
    • BMB Reports
    • /
    • v.46 no.1
    • /
    • pp.53-58
    • /
    • 2013
  • We constructed deletion mutants and seven point mutants by polymerase chain reaction to investigate the specificity of feline foamy virus integrase functional domains. Complementation reactions were performed for three enzymatic activities such as 3'-end processing, strand transfer, and disintegration. The complementation reactions with deletion mutants showed several activities for 3'-end processing and strand transfer. The conserved central domain and the combination of the N-terminal or C-terminal domains increased disintegration activity significantly. In the complementation reactions between deletion and point mutants, the combination between D107V and deletion mutants revealed 3'-end processing activities, but the combination with others did not have any activity, including strand transfer activities. Disintegration activity increased evenly, except the combination with glutamic acid 200. These results suggest that an intact central domain mediates enzymatic activities but fails to show these activities in the absence of the N-terminal or C-terminal domains.

Nuclear Bodies Built on Architectural Long Noncoding RNAs: Unifying Principles of Their Construction and Function

  • Chujo, Takeshi;Hirose, Tetsuro
    • Molecules and Cells
    • /
    • v.40 no.12
    • /
    • pp.889-896
    • /
    • 2017
  • Nuclear bodies are subnuclear, spheroidal, and membraneless compartments that concentrate specific proteins and/or RNAs. They serve as sites of biogenesis, storage, and sequestration of specific RNAs, proteins, or ribonucleoprotein complexes. Recent studies reveal that a subset of nuclear bodies in various eukaryotic organisms is constructed using architectural long noncoding RNAs (arcRNAs). Here, we describe the unifying mechanistic principles of the construction and function of these bodies, especially focusing on liquid-liquid phase separation induced by architectural molecules that form multiple weakly adhesive interactions. We also discuss three possible advantages of using arcRNAs rather than architectural proteins to build the bodies: position-specificity, rapidity, and economy in sequestering nucleic acid-binding proteins. Moreover, we introduce two recently devised methods to discover novel arcRNA-constructed bodies; one that focuses on the RNase-sensitivity of these bodies, and another that focuses on "semi-extractability" of arcRNAs.

Bacterial Hormone-Sensitive Lipases (bHSLs): Emerging Enzymes for Biotechnological Applications

  • Kim, T. Doohun
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.11
    • /
    • pp.1907-1915
    • /
    • 2017
  • Lipases are important enzymes with biotechnological applications in dairy, detergent, food, fine chemicals, and pharmaceutical industries. Specifically, hormone-sensitive lipase (HSL) is an intracellular lipase that can be stimulated by several hormones, such as catecholamine, glucagon, and adrenocorticotropic hormone. Bacterial hormone-sensitive lipases (bHSLs), which are homologous to the C-terminal domain of HSL, have ${\alpha}/{\beta}-hydrolase$ fold with a catalytic triad composed of His, Asp, and Ser. These bHSLs could be used for a wide variety of industrial applications because of their high activity, broad substrate specificity, and remarkable stability. In this review, the relationships among HSLs, the microbiological origins, the crystal structures, and the biotechnological properties of bHSLs are summarized.

Characterization of tissue-specific mbu-3 gene expression in the mouse central nervous system

  • Lee, Chae-Jin;Cho, Eun-Young;Kim, Sun-Jung
    • BMB Reports
    • /
    • v.41 no.12
    • /
    • pp.875-880
    • /
    • 2008
  • Mbu-3 is a novel mouse brain unigene that was identified by digital differential display. In this study, expression of the gene was chased through developmental stages and the protein product was identified in the brain. The cDNA sequence was 3,995-bp long and contained an ORF of 745 AA. Database searches revealed that the chicken SST273 gene containing LRR- and Ig-domain was an mbu-3 orthologue. Tissue specificity for the gene was examined in embryos and in brains at post-natal and adult stages. During the embryonic stages, mbu-3 was localized to the central nervous system in the brain and spinal cord. In the early post-natal stages, the gene was evenly expressed in the brain. However, with aging, expression was confined to specific regions, particularly the hippocampus. The protein was approximately 95 kDa as determined by Western blot analysis of brain extracts.

Structural insights showing how arginine is able to be glycosylated by pathogenic effector proteins

  • Park, Jun Bae;Yoo, Youngki;Cho, Hyun-Soo
    • BMB Reports
    • /
    • v.51 no.12
    • /
    • pp.609-610
    • /
    • 2018
  • Glycosylation is one form of protein modification and plays a key role in protein stability, function, signaling regulation and even cancer. NleB and SseK are bacterial effector proteins and possess glycosyltransferase activity, even though they have different substrate preferences. NleB/SseKs transfer the GlcNAc sugar to an arginine residue of host proteins, leading to reduced $NF-{\kappa}B-dependent$ responses. By combining X-ray crystallography, NMR, molecular dynamics, enzyme kinetic assays and in vivo experiments, we demonstrated that a conserved HEN (His-Glu-Asn) motif in the active site plays a key role in enzyme catalysis and virulence. The lid-domain regulates the opening and closing of the active site and the HLH domain determines the substrate specificity. Our findings provide evidence for the enzymatic mechanism by which arginine can be glycosylated by SseK/NleB enzymes.

Establishment of a Binding Assay System for Screening of the Inhibitors of $p56^{lck}$ SH2 Domain

  • Kim, Jyn-Ho;Hur, Eun-Mi;Yun, Yung-Dae
    • BMB Reports
    • /
    • v.31 no.4
    • /
    • pp.370-376
    • /
    • 1998
  • Src-Homology 2 (SH2) domains have a capacity to bind phosphotyrosine-containing sequence context and play essential roles in various cellular signaling pathways. Due to the specific nature of the binding between SH2 domains and their counterpart proteins, inhibitors of SID domain binding have drawn extensive attention as a potential candidate for therapeutic agents. Here, we describe the binding assay system to screen for the ligands or blockers of the SH2 domains with an emphasis on the $p56^{lck}$ SH2 domain. In our assay system, SID domains expressed and purified as fusion proteins to Glutathione-S-transferase (GST) were covalently attached to 96-well microtitre plates through amide bond formation, which were subsequently allowed to bind the biotinylated phosphotyrosine (pY)containing synthetic pep tides. The binding of biotinylated pY peptides was detected by the horseradish peroxidase (HRP)-conjugated streptavidin. Using the various combinations of SH2 domain-pY peptides, we observed that: (1) The binding of pY-peptides to its counterpart SH2 domain is concentration-dependent and saturable; (2) The binding is highly specific for a particular combination of SH2 domain-pY peptide pair; and (3) The binding of Lck SH2-cognate pY-peptides is specifically competed by the nonbiotinylated peptides with expected relative affinity. These results indicate that the established assay system detects the SH2-pY peptide interaction with reproducible sensitivity and specificity and is suitable for screening the specific inhibitors of $p56^{lck}$ SH2 function.

  • PDF