Browse > Article
http://dx.doi.org/10.4014/jmb.1708.08004

Bacterial Hormone-Sensitive Lipases (bHSLs): Emerging Enzymes for Biotechnological Applications  

Kim, T. Doohun (Department of Chemistry, College of Natural Science, Sookmyung Women's University)
Publication Information
Journal of Microbiology and Biotechnology / v.27, no.11, 2017 , pp. 1907-1915 More about this Journal
Abstract
Lipases are important enzymes with biotechnological applications in dairy, detergent, food, fine chemicals, and pharmaceutical industries. Specifically, hormone-sensitive lipase (HSL) is an intracellular lipase that can be stimulated by several hormones, such as catecholamine, glucagon, and adrenocorticotropic hormone. Bacterial hormone-sensitive lipases (bHSLs), which are homologous to the C-terminal domain of HSL, have ${\alpha}/{\beta}-hydrolase$ fold with a catalytic triad composed of His, Asp, and Ser. These bHSLs could be used for a wide variety of industrial applications because of their high activity, broad substrate specificity, and remarkable stability. In this review, the relationships among HSLs, the microbiological origins, the crystal structures, and the biotechnological properties of bHSLs are summarized.
Keywords
Hormone-sensitive lipase; cap domain; promiscuity; substrate specificities; industrial applications;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Nam KH, Kim MY, Kim SJ, Priyadarshi A, Kwon ST, Koo BS, et al. 2009. Structural and functional analysis of a novel hormone-sensitive lipase from a metagenome library. Proteins 74: 1036-1040.   DOI
2 Palm GJ, Fernandez-Alvaro E, Bogdanovic X, Bartsch S, Sczodrok J, Singh RK, et al. 2011. The crystal structure of an esterase from the hyperthermophilic microorganism Pyrobaculum calidifontis VA1 explains its enantioselectivity. Appl. Microbiol. Biotechnol. 91: 1061-1072.   DOI
3 Zheng X, Guo J, Xu L, Li H, Zhang D, Zhang K, et al. 2011. Crystal structure of a novel esterase Rv0045c from Mycobacterium tuberculosis. PLoS One 6: e20506.   DOI
4 Febbraio F, Merone L, Cetrangolo GP, Rossi M, Nucci R, Manco G. 2011. Thermostable esterase 2 from Alicyclobacillus acidocaldarius as biosensor for the detection of organophosphate pesticides. Anal. Chem. 83: 1530-1536.   DOI
5 Pohlmann C, Wang Y, Humenik M, Heidenreich B, Gareis M, Sprinzl M. 2009. Rapid, specific and sensitive electrochemical detection of foodborne bacteria. Biosens. Bioelectron. 24:2766-2771.   DOI
6 Zhu X, Larsen NA, Basran A, Bruce NC, Wilson IA. 2003. Observation of an arsenic adduct in an acetyl esterase crystal structure. J. Biol. Chem. 278: 2008-2014.   DOI
7 Alvarez Y, Esteban-Torres M, Cortes-Cabrera A, Gago F, Acebron I, Benavente R, et al. 2014. Esterase LpEst1 from Lactobacillus plantarum: a novel and atypical member of the ${\alpha}$${\beta}$ hydrolase superfamily of enzymes. PLoS One 9: e92257.   DOI
8 Bassegoda A, Fillat A, Pastor FI, Diaz P. 2013. Special Rhodococcus sp. CR-53 esterase Est4 contains a GGG(A)X-oxyanion hole conferring activity for the kinetic resolution of tertiary alcohols. Appl. Microbiol. Biotechnol. 97: 8559-8568.   DOI
9 Virk AP, Sharma P, Capalash N. 2011. A new esterase, belonging to hormone-sensitive lipase family, cloned from Rheinheimera sp. isolated from industrial effluent. J. Microbiol. Biotechnol. 21: 667-674.   DOI
10 Benavente R, Esteban-Torres M, Acebron I, de Las Rivas B, Munoz R, Alvarez Y, et al. 2013. Structure, biochemical characterization and analysis of the pleomorphism of carboxylesterase Cest-2923 from Lactobacillus plantarum WCFS1. FEBS J. 280: 6658-6671.   DOI
11 Jadeja D, Dogra N, Arya S, Singh G, Singh G, Kaur J. 2016. Characterization of LipN (Rv2970c) of Mycobacterium tuberculosis H37Rv and its probable role in Xenobiotic degradation. J. Cell. Biochem. 117: 390-401.   DOI
12 Li C, Li Q, Zhang Y, Gong Z, Ren S, Li P, Xie J. 2017. Characterization and function of Mycobacterium tuberculosis H37Rv lipase Rv1076 (LipU). Microbiol. Res. 196: 7-16.   DOI
13 Rauwerdink A, Kazlauskas RJ. 2015. How the same core catalytic machinery catalyzes 17 different reactions: the serine-histidine-aspartate catalytic triad of ${\alpha}$/${\beta}$-hydrolase fold enzymes. ACS Catal. 5: 6153-6176.   DOI
14 Ngo TD, Ryu BH, Ju H, Jang E, Park K, Kim KK, et al. 2013. Structural and functional analyses of a bacterial homologue of hormone-sensitive lipase from a metagenomic library. Acta Crystallogr. D Biol. Crystallogr. 69: 1726-1737.   DOI
15 Li PY, Chen XL, Ji P, Li CY, Wang P, Zhang Y, et al. 2015. Interdomain hydrophobic interactions modulate the thermostability of microbial esterases from the hormonesensitive lipase family. J. Biol. Chem. 290: 11188-11198.   DOI
16 Huang J, Huo YY, Ji R, Kuang S, Ji C, Xu XW, et al. 2016. Structural insights of a hormone-sensitive lipase homologue Est22. Sci. Rep. 6: 28550.   DOI
17 Rashamuse K, Ronneburg T, Hennessy F, Visser D, van Heerden E, Piater L, et al. 2009. Discovery of a novel carboxylesterase through functional screening of a preenriched environmental library. J. Appl. Microbiol. 106:1532-1539.   DOI
18 Lin Y, Li Q, Xie L, Xie J. 2017. Mycobacterium tuberculosis rv1400c encodes functional lipase/esterase. Protein Expr. Purif. 129: 143-149.   DOI
19 Dua A, Gupta R. 2017. Functional characterization of hormone-sensitive-like lipase from Bacillus halodurans:synthesis and recovery of pNP-laurate with high yields. Extremophiles DOI: 10.1007/s00792-017-0949-8 [In Press].   DOI
20 Nam KH, Kim MY, Kim SJ, Priyadarshi A, Lee WH, Hwang KY. 2009. Structural and functional analysis of a novel EstE5 belonging to the subfamily of hormone-sensitive lipase. Biochem. Biophys. Res. Commun. 379: 553-556.   DOI
21 Bunterngsook B, Kanokratana P, Thongaram T, Tanapongpipat S, Uengwetwanit T, Rachdawong S, et al. 2010. Identification and characterization of lipolytic enzymes from a peatswamp forest soil metagenome. Biosci. Biotechnol. Biochem. 74: 1848-1854.   DOI
22 Tao W, Lee MH, Yoon MY, Kim JC, Malhotra S, Wu J, et al. 2011. Characterization of two metagenome-derived esterases that reactivate chloramphenicol by counteracting chloramphenicol acetyltransferase. J. Microbiol. Biotechnol. 21: 1203-1210.   DOI
23 Ko KC, Rim SO, Han Y, Shin BS, Kim GJ, Choi JH, et al. 2012. Identification and characterization of a novel coldadapted esterase from a metagenomic library of mountain soil. J. Ind. Microbiol. Biotechnol. 39: 681-689.   DOI
24 Jiang X, Xu X, Huo Y, Wu Y, Zhu X, Zhang X, et al. 2012. Identification and characterization of novel esterases from a deep-sea sediment metagenome. Arch. Microbiol. 194: 207-214.   DOI
25 Wang J, Shen WJ, Patel S, Harada K, Kraemer FB. 2005. Mutational analysis of the “regulatory module” of hormonesensitive lipase. Biochemistry 44: 1953-1959.   DOI
26 Marchot P, Chatonnet A. 2012. Enzymatic activity and protein interactions in alpha/beta hydrolase fold proteins:moonlighting versus promiscuity. Protein Pept. Lett. 19:132-143.   DOI
27 Jochens H, Hesseler M, Stiba K, Padhi SK, Kazlauskas RJ, Bornscheuer UT. 2011. Protein engineering of ${\alpha}$/${\beta}$-hydrolase fold enzymes. Chembiochem 12: 1508-1517.   DOI
28 Mandrich L, Merone L, Pezzullo M, Cipolla L, Nicotra F, Rossi M, et al. 2005. Role of the N terminus in enzyme activity, stability and specificity in thermophilic esterases belonging to the HSL family. J. Mol. Biol. 345: 501-512.   DOI
29 Krintel C, Morgelin M, Logan DT, Holm C. 2009. Phosphorylation of hormone-sensitive lipase by protein kinase A in vitro promotes an increase in its hydrophobic surface area. FEBS J. 276: 4752-4762.   DOI
30 Lee SW, Won K, Lim HK, Kim JC, Choi GJ, Cho KY. 2004. Screening for novel lipolytic enzymes from uncultured soil microorganisms. Appl. Microbiol. Biotechnol. 65: 720-726.   DOI
31 Rhee JK, Ahn DG, Kim YG, Oh JW. 2005. New thermophilic and thermostable esterase with sequence similarity to the hormone-sensitive lipase family, cloned from a metagenomic library. Appl. Environ. Microbiol. 71: 817-825.   DOI
32 Kim YJ, Choi GS, Kim SB, Yoon GS, Kim YS, Ryu YW. 2006. Screening and characterization of a novel esterase from a metagenomic library. Protein Expr. Purif. 45: 315-323.   DOI
33 Hong KS, Lim HK, Chung EJ, Park EJ, Lee MH, Kim JC, et al. 2007. Selection and characterization of forest soil metagenome genes encoding lipolytic enzymes. J. Microbiol. Biotechnol. 17: 1655-1660.
34 Hardeman F, Sjoling S. 2007. Metagenomic approach for the isolation of a novel low-temperature-active lipase from uncultured bacteria of marine sediment. FEMS Microbiol. Ecol. 59: 524-534.   DOI
35 Chu X, He H, Guo C, Sun B. 2008. Identification of two novel esterases from a marine metagenomic library derived from South China Sea. Appl. Microbiol. Biotechnol. 80: 615-625.   DOI
36 Roh C, Villatte F. 2008. Isolation of a low-temperature adapted lipolytic enzyme from uncultivated microorganism. J. Appl. Microbiol. 105: 116-123.   DOI
37 Manco G, Febbraio F, Adinolfi E, Rossi M. 1999. Homology modeling and active-site residues probing of the thermophilic Alicyclobacillus acidocaldarius esterase 2. Protein Sci. 8: 1789-1796.   DOI
38 Jeon JH, Lee HS, Kim JT, Kim SJ, Choi SH, Kang SG, et al. 2012. Identification of a new subfamily of salt-tolerant esterases from a metagenomic library of tidal flat sediment. Appl. Microbiol. Biotechnol. 93: 623-631.   DOI
39 Biver S, Vandenbol M. 2013. Characterization of three new carboxylic ester hydrolases isolated by functional screening of a forest soil metagenomic library. J. Ind. Microbiol. Biotechnol. 40: 191-200.   DOI
40 Sherlin D, Anishetty S. 2015. Mechanistic insights from molecular dynamic simulation of Rv0045c esterase in Mycobacterium tuberculosis. J. Mol. Model. 21: 90.   DOI
41 Haruki M, Oohashi Y, Mizuguchi S, Matsuo Y, Morikawa M, Kanaya, S. 1999. Identification of catalytically essential residues in Escherichia coli esterase by site-directed mutagenesis. FEBS Lett. 454: 262-266.   DOI
42 Mandrich L, Menchise V, Alterio V, De Simone G, Pedone C, Rossi M, et al. 2008. Functional and structural features of the oxyanion hole in a thermophilic esterase from Alicyclobacillus acidocaldarius. Proteins 71: 1721-1731.
43 Jaeger KE, Eggert T. 2002. Lipases for biotechnology. Curr. Opin. Biotechnol. 13: 390-397.   DOI
44 Casas-Godoy L, Duquesne S, Bordes F, Sandoval G, Marty A. 2012. Lipases: an overview. Methods Mol. Biol. 861: 3-30.
45 Watt MJ, Steinberg GR. 2008. Regulation and function of triacylglycerol lipases in cellular metabolism. Biochem J. 414: 313-325.   DOI
46 Stergiou PY, Foukis A, Filippou M, Koukouritaki M, Parapouli M, Theodorou LG, et al. 2013. Advances in lipase-catalyzed esterification reactions. Biotechnol. Adv. 31: 1846-1859.   DOI
47 Hui DY, Howles PN. 2002. Carboxyl ester lipase: structurefunction relationship and physiological role in lipoprotein metabolism and atherosclerosis. J. Lipid Res. 43: 2017-2030.   DOI
48 Dukunde A, Schneider D, Lu M, Brady S, Daniel R. 2017. A novel, versatile family IV carboxylesterase exhibits high stability and activity in a broad pH spectrum. Biotechnol. Lett. 39: 577-587.   DOI
49 Petrovskaya LE, Novototskaya-Vlasova KA, Spirina EV, Durdenko EV, Lomakina GY, Zavialova MG, et al. 2016. Expression and characterization of a new esterase with GCSAG motif from a permafrost metagenomic library. FEMS Microbiol. Ecol. 92: fiw046.   DOI
50 Petrovskaya LE, Novototskaya-Vlasova KA, Gapizov SS, Spirina EV, Durdenko EV, Rivkina EM. 2016. New member of the hormone-sensitive lipase family from the permafrost microbial community. Bioengineered 7: 1-4   DOI
51 Ben Ali Y, Chahinian H, Petry S, Muller G, Lebrun R, Verger R, et al. 2006. Use of an inhibitor to identify members of the hormone-sensitive lipase family. Biochemistry 45:14183-14191.   DOI
52 Ascione G, de Pascale D, De Santi C, Pedone C, Dathan NA, Monti SM. 2012. Native expression and purification of hormone-sensitive lipase from Psychrobacter sp. TA144 enhances protein stability and activity. Biochem. Biophys. Res. Commun. 420: 542-546.   DOI
53 Schiefner A, Gerber K, Brosig A, Boos W. 2014 Structural and mutational analyses of Aes, an inhibitor of MalT in Escherichia coli. Proteins 82: 268-277.   DOI
54 Neves Petersen MT, Fojan P, Petersen SB. How do lipases and esterases work: the electrostatic contribution. J. Biotechnol. 85: 115-147.
55 Kourist R, Krishna S, Patel JS, Bartnek F, Hitchman TS, Weiner DP, et al. 2007. Identification of a metagenomederived esterase with high enantioselectivity in the kinetic resolution of arylaliphatic tertiary alcohols. Org. Biomol. Chem. 5: 3310-3313.   DOI
56 Rehdorf J, Behrens GA, Nguyen GS, Kourist R, Bornscheuer UT. 2012. Pseudomonas putida esterase contains a GGG(A)Xmotif confering activity for the kinetic resolution of tertiary alcohols. Appl. Microbiol. Biotechnol. 93: 1119-1126.   DOI
57 Truongvan N, Chung HS, Jang SH, Lee C. 2016. Conserved tyrosine 182 residue in hyperthermophilic esterase EstE1 plays a critical role in stabilizing the active site. Extremophiles 20: 187-193.   DOI
58 Kumar A, Khan A, Malhotra S, Mosurkal R, Dhawan A, Pandey MK, et al. 2016. Synthesis of macromolecular systems via lipase catalyzed biocatalytic reactions: applications and future perspectives. Chem. Soc. Rev. 45: 6855-6887.   DOI
59 Holmquist M. 2000. Alpha/beta-hydrolase fold enzymes:structures, functions and mechanisms. Curr. Protein Pept. Sci. 1: 209-235.   DOI
60 Gupta R, Gupta N, Rathi P. 2004. Bacterial lipases: an overview of production, purification and biochemical properties. Appl. Microbiol. Biotechnol. 64: 763-781.   DOI
61 Anobom CD, Pinheiro AS, De-Andrade RA, Aguieiras EC, Andrade GC, Moura MV, et al. 2014. From structure to catalysis: recent developments in the biotechnological applications of lipases. Biomed. Res. Int. 2014: 684506.
62 Lampidonis AD, Rogdakis E, Voutsinas GE, Stravopodis DJ. 2011. The resurgence of hormone-sensitive lipase (HSL) in mammalian lipolysis. Gene 477: 1-11.   DOI
63 Lass A, Zimmermann R, Oberer M, Zechner R. 2011. Lipolysis - a highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores. Prog. Lipid Res. 50: 14-27.   DOI
64 Arner P, Langin D. 2007. The role of neutral lipases in human adipose tissue lipolysis. Curr. Opin. Lipidol. 18: 246-250.   DOI
65 Lafontan M, Langin D. 2009. Lipolysis and lipid mobilization in human adipose tissue. Prog. Lipid Res. 48: 275-297.   DOI
66 Yeaman SJ. 2004. Hormone-sensitive lipase - new roles for an old enzyme. Biochem. J. 379: 11-22.   DOI
67 Krintel C, Klint C, Lindvall H, Morgelin M, Holm C. 2010. Quarternary structure and enzymological properties of the different hormone-sensitive lipase (HSL) isoforms. PLoS One 5: e11193.   DOI
68 Li PY, Ji P, Li CY, Zhang Y, Wang GL, Zhang XY, et al. 2014. Structural basis for dimerization and catalysis of a novel esterase from the GTSAG motif subfamily of the bacterial hormone-sensitive lipase family. J. Biol. Chem. 289:19031-19041.   DOI
69 Alvarez Y, Esteban-Torres M, Acebron I, de las Rivas B, Munoz R, Martinez-Ripoll M, et al. 2011. Preliminary X-ray analysis of twinned crystals of the Q88Y25_Lacpl esterase from Lactobacillus plantarum. Acta Crystallogr. F Struct. Biol. Cryst. Commun. 67: 1436-1439.   DOI
70 Wei Y, Contreras JA, Sheffield P, Osterlund T, Derewenda U, Kneusel RE, et al. 1999. Crystal structure of brefeldin A esterase, a bacterial homolog of the mammalian hormonesensitive lipase. Nat. Struct. Biol. 6: 340-345.   DOI
71 Smith AJ, Sanders MA, Juhlmann BE, Hertzel AV, Bernlohr DA. 2008. Mapping of the hormone-sensitive lipase binding site on the adipocyte fatty acid-binding protein (AFABP). Identification of the charge quartet on the AFABP/aP2 helix-turn-helix domain. J. Biol. Chem. 283: 33536-33543.   DOI
72 Yuhong Z, Shi P, Liu W, Meng K, Bai Y, Wang G, et al. 2009. Lipase diversity in glacier soil based on analysis of metagenomic DNA fragments and cell culture. J. Microbiol. Biotechnol. 19: 888-897.   DOI
73 Rhee JK, Kim DY, Ahn DG, Yun JH, Jang SH, Shin HC, et al. 2006. Analysis of the thermostability determinants of hyperthermophilic esterase EstE1 based on its predicted three-dimensional structure. Appl. Environ. Microbiol. 72:3021-3025.   DOI
74 Pezzullo M, Del Vecchio P, Mandrich L, Nucci R, Rossi M, Manco G. 2013. Comprehensive analysis of surface charged residues involved in thermal stability in Alicyclobacillus acidocaldarius esterase 2. Protein Eng. Des. Sel. 26: 47-58.   DOI
75 Smith GM, Garton AJ, Aitken A, Yeaman SJ. 1996. Evidence for a multi-domain structure for hormone-sensitive lipase. FEBS Lett. 396: 90-94.   DOI
76 Osterlund T. 2001. Structure-function relationships of hormone-sensitive lipase. Eur. J. Biochem. 268: 1899-1907.   DOI
77 Jenkins-Kruchten AE, Bennaars-Eiden A, Ross JR, Shen WJ, Kraemer FB, Bernlohr DA. 2003. Fatty acid-binding protein hormone-sensitive lipase interaction. Fatty acid dependence on binding. J. Biol. Chem. 278: 47636-47643.   DOI
78 Osterlund T, Contreras JA, Holm C. 1997. Identification of essential aspartic acid and histidine residues of hormone-sensitive lipase: apparent residues of the catalytic triad. FEBS Lett. 403: 259-262.   DOI
79 Langin D, Laurell H, Holst LS, Belfrage P, Holm C. 1993. Gene organization and primary structure of human hormone-sensitive lipase: possible significance of a sequence homology with a lipase of Moraxella TA144, an antarctic bacterium. Proc. Natl. Acad. Sci. USA 90: 4897-4901.   DOI
80 Feller G, Thiry M, Gerday C. 1991. Nucleotide sequence of the lipase gene lip2 from the antarctic psychrotroph Moraxella TA144 and site-specific mutagenesis of the conserved serine and histidine residues. DNA Cell Biol. 10: 381-388.   DOI
81 Reddy PG, Allon R, Mevarech M, Mendelovitz S, Sato Y, Gutnick DL. 1989. Cloning and expression in Escherichia coli of an esterase-coding gene from the oil-degrading bacterium Acinetobacter calcoaceticus RAG-1. Gene 76: 145-152.   DOI
82 Nam KH, Kim SJ, Priyadarshi A, Kim HS, Hwang KY. 2009. The crystal structure of an HSL-homolog EstE5 complex with PMSF reveals a unique configuration that inhibits the nucleophile Ser144 in catalytic triads. Biochem. Biophys. Res. Commun. 389: 247-250.   DOI
83 De Simone G, Galdiero S, Manco G, Lang D, Rossi M, Pedone C. 2000. A snapshot of a transition state analogue of a novel thermophilic esterase belonging to the subfamily of mammalian hormone-sensitive lipase. J. Mol. Biol. 303:761-771.   DOI
84 De Simone G, Menchise V, Manco G, Mandrich L, Sorrentino N, Lang D, et al. 2001. The crystal structure of a hyper-thermophilic carboxylesterase from the archaeon Archaeoglobus fulgidus. J. Mol. Biol. 314: 507-518.   DOI
85 Byun JS, Rhee JK, Kim ND, Yoon J, Kim DU, Koh E, et al. 2007. Crystal structure of hyperthermophilic esterase EstE1 and the relationship between its dimerization and thermostability properties. BMC Struct. Biol. 7: 47   DOI
86 Angkawidjaja C, Koga Y, Takano K, Kanaya S. 2012. Structure and stability of a thermostable carboxylesterase from the thermoacidophilic archaeon Sulfolobus tokodaii. FEBS J. 279: 3071-3084.   DOI
87 De Simone G, Mandrich L, Menchise V, Giordano V, Febbraio F, Rossi M, et al. 2004. A substrate-induced switch in the reaction mechanism of a thermophilic esterase: kinetic evidences and structural basis. J. Biol. Chem. 279: 6815-6823.   DOI
88 Mandrich L, Merone L, Manco G. 2009. Structural and kinetic overview of the carboxylesterase EST2 from Alicyclobacillus acidocaldarius: a comparison with the other members of the HSL family. Protein Pept. Lett. 16: 1189-1200.   DOI
89 De Santi C, Tutino ML, Mandrich L, Giuliani M, Parrilli E, Del Vecchio P, et al. 2010. The hormone-sensitive lipase from Psychrobacter sp. TA144: new insight in the structural/functional characterization. Biochimie 92: 949-957.   DOI
90 Manco G, Mandrich L, Rossi M. 2001. Residues at the active site of the esterase 2 from Alicyclobacillus acidocaldarius involved in substrate specificity and catalytic activity at high temperature. J. Biol. Chem. 276: 37482-37490.   DOI
91 Li C, Li Q, Zhang Y, Gong Z, Ren S, Li P, et al. 2017. Characterization and function of Mycobacterium tuberculosis H37Rv lipase Rv1076 (LipU). Microbiol. Res. 196: 7-16.   DOI
92 Manco G, Adinolfi E, Pisani FM, Ottolina G, Carrea G, Rossi M. 1998. Overexpression and properties of a new thermophilic and thermostable esterase from Bacillus acidocaldarius with sequence similarity to hormone-sensitive lipase subfamily. Biochem. J. 332: 203-212.   DOI
93 Raibaud A, Zalacain M, Holt TG, Tizard R, Thompson CJ. 1991. Nucleotide sequence analysis reveals linked N-acetyl hydrolase, thioesterase, transport, and regulatory genes encoded by the bialaphos biosynthetic gene cluster of Streptomyces hygroscopicus. J. Bacteriol. 173: 4454-4463.   DOI
94 Langin D, Holm C. 1993. Sequence similarities between hormone-sensitive lipase and five prokaryotic enzymes. Trends Biochem. Sci. 18: 466-467.   DOI
95 Choo DW, Kurihara T, Suzuki T, Soda K, Esaki N. 1998. A cold-adapted lipase of an Alaskan psychrotroph, Pseudomonas sp. strain B11-1: gene cloning and enzyme purification and characterization. Appl. Environ. Microbiol. 64: 486-491.
96 Watt MJ, Steinberg GR. 2008. Regulation and function of triacylglycerol lipases in cellular metabolism. Biochem. J. 414: 313-325.   DOI
97 Mizuguchi S, Amada K, Haruki M, Imanaka T, Morikawa M, Kanaya S. 1999. Identification of the gene encoding esterase, a homolog of hormone-sensitive lipase, from an oildegrading bacterium, strain HD-1. J. Biochem. 126: 731-737.   DOI
98 Kanaya S, Koyanagi T, Kanaya E. 1998. An esterase from Escherichia coli with a sequence similarity to hormonesensitive lipase. Biochem. J. 332: 75-80.   DOI
99 Manco G, Giosue E, D'Auria S, Herman P, Carrea G, Rossi M. 2000. Cloning, overexpression, and properties of a new thermophilic and thermostable esterase with sequence similarity to hormone-sensitive lipase subfamily from the archaeon Archaeoglobus fulgidus. Arch. Biochem. Biophys. 373: 182-192.   DOI
100 Kim S, Joo S, Yoon HC, Ryu Y, Kim KK, Kim TD. 2007. Purification, crystallization and preliminary crystallographic analysis of Est25: a ketoprofen-specific hormone-sensitive lipase. Acta Crystallogr. F Struct. Biol. Cryst. Commun. 63:579-581.   DOI
101 Manco G, Carrea G, Giosue E, Ottolina G, Adamo G, Rossi M. 2002. Modification of the enantioselectivity of two homologous thermophilic carboxylesterases from Alicyclobacillus acidocaldarius and Archaeoglobus fulgidus by random mutagenesis and screening. Extremophiles 6: 325-331.   DOI
102 Delorme V, Diomande SV, Dedieu L, Cavalier JF, Carriere F, Kremer L, et al. 2012. MmPPOX inhibits Mycobacterium tuberculosis lipolytic enzymes belonging to the hormonesensitive lipase family and alters mycobacterial growth. PLoS One 7: e46493.   DOI
103 Kulakova L, Galkin A, Nakayama T, Nishino T, Esaki N. 2004. Cold-active esterase from Psychrobacter sp. Ant300:gene cloning, characterization, and the effects of Gly-->Pro substitution near the active site on its catalytic activity and stability. Biochim. Biophys. Acta 1696: 59-65.   DOI
104 Canaan S, Maurin D, Chahinian H, Pouilly B, Durousseau C, Frassinetti F, et al. 2004. Expression and characterization of the protein Rv1399c from Mycobacterium tuberculosis. A novel carboxyl esterase structurally related to the HSL family. Eur. J. Biochem. 271: 3953-3961.   DOI
105 Deb C, Daniel J, Sirakova TD, Abomoelak B, Dubey VS, Kolattukudy PE. 2006. A novel lipase belonging to the hormone-sensitive lipase family induced under starvation to utilize stored triacylglycerol in Mycobacterium tuberculosis. J. Biol. Chem. 281: 3866-3875.   DOI
106 Sumby KM, Matthews AH, Grbin PR, Jiranek V. 2009. Cloning and characterization of an intracellular esterase from the wine-associated lactic acid bacterium Oenococcus oeni. Appl. Environ. Microbiol. 75: 6729-6735.   DOI
107 Soror SH, Rao R, Cullum J. 2009. Mining the genome sequence for novel enzyme activity: characterisation of an unusual member of the hormone-sensitive lipase family of esterases from the genome of Streptomyces coelicolor A3 (2). Protein Eng. Des. Sel. 36: 333-339.