• Title/Summary/Keyword: domain wall pinning

Search Result 25, Processing Time 0.018 seconds

Numerical Formula of Depinning Fields from Notches in Ferromagnetic Permalloy Nanowire

  • Kim, Kab-Jin;You, Chun-Yeol;Choe, Sug-Bong
    • Journal of Magnetics
    • /
    • v.13 no.4
    • /
    • pp.136-139
    • /
    • 2008
  • A simplified equation of depinning fields from notches of ferromagnetic Permalloy nanowires is presented. The derived equation is given in the form of an explicit function of nanowire width and thickness, and notch depth and angle. The equation agrees with all micromagnetic simulation results to an accuracy of ${\pm}$ 0.5 mT.

Sputering Pressure and Temperature Effects on Magnetization Reversal Behaviors of $Co(2\AA)/Pd(13\AA)$ Multilayers (스퍼터링압력 및 온도 효과에 의한 $Co(2\AA)/Pd(13\AA)$ 다층박막의 자화반전 거동)

  • 김성봉;정순영
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.4
    • /
    • pp.199-203
    • /
    • 1996
  • To study the magnetization reversal behavior of Co/Pd multilayers, we first demagnetized the samples by the field-demagnetized method and then measured initial curves and minor loops. The coercivity and the perpendicular magnetic anisotropy were obtained from the perpendicular and parallel magnetization curves measured at different temperatures. We interpret our experimental results by applying several qualitative and semiquantative approaches. From these study, we found that the magnetization reversal behavior is dominated by the domain wall pinning for all samples and the coercivity incremental tendency can be explained by Kronmuller's formula $H_c(T)\;{\propto}\;r_0.K_u$.

  • PDF

Magnetic Field Dependence of the Activation Volume for Sr-ferrite Particles (Sr-페라이트 자성 입자의 활성화 부피의 자기장 의존성)

  • Kim, Hyeon Soo;Jeong, Soon Young;Kim, Kyung Min;Kwon, Hae-Woong
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.6
    • /
    • pp.196-200
    • /
    • 2016
  • In this study the mechanisms of magnetization reversal and magnetic interaction effects on activation volumes for Sr-ferrite with different particle sizes are investigated. The activation volumes of C2 sample are larger than those of C3 sample in the range of low magnetic fields. But the fields above the coercivity of sample C2, the activation volumes of both samples are decreased linearly with increasing the applied magnetic field. These phenomena can be explained by the strengths of two critical fields representing the reverse domain nucleation field and the domain wall pinning field as well as the strength of dipolar interaction.

(K,Na)NbO3-based Lead-free Piezoelectric Materials: An Encounter with Scanning Probe Microscopy

  • Zhang, Mao-Hua;Thong, Hao Cheng;Lu, Yi Xue;Sun, Wei;Li, Jing-Feng;Wang, Ke
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.4
    • /
    • pp.261-271
    • /
    • 2017
  • Environment-friendly $(K,Na)NbO_3-based$ (KNN) lead-free piezoelectric materials have been studied extensively in the past decade. Significant progress has been made in this field, manifesting competitive piezoelectric performance with that of lead-based, for specific application scenarios. Further understanding of the relationship between high piezoelectricity and microstructure or more precisely, ferroelectric domain structure, domain wall pinning effect, domain wall conduction and local polarization switching underpins the continuous advancement of piezoelectric properties, with the help of piezoresponse force microscopy (PFM). In this review, we will present the fundamentals of scanning probe microscopy (SPM) and its cardinal derivative in piezoelectric and ferroelectric world, PFM. Some representative operational modes and a variety of recent applications in KNN-based piezoelectric materials are presented. We expect that PFM and its combination with some newly developed technology will continue to provide great insight into piezoelectric materials and structures, and will play a valuable role in promoting the performance to a new level.

Effects of Ag Seed Layer on the Magnetic Properties and the Microstructural Evolution of SmCo/Cr Thin Films (Ag 씨앗층이 SmCo/Cr 박막의 자기적 특성과 미세구조에 미치는 영향)

  • 이성래;고광식;김영근
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.2
    • /
    • pp.63-71
    • /
    • 2001
  • The effects of an Ag seed layer on the magnetic properties and the microstructural evolution of SmCo/Cr thin films deposited on glass substrates were investigated. Coercivity of the films is 2.0 kOe when the thickness of Ag seed layer was 1nm thick, but it increased to 2.7 kOe when the Ag seed layer thickness is 3 nm. The increase of coercivity for film with 3 nm-thick Ag is due to roughness of Cr and grain size of Cr by the Ag microbumps. Ar partial pressure influenced on the formation of Ag microbumps, for example, they were formed at 5 mTorr when Ag thickness was 1 nm. The mechanism of magnetization reversal of the SmCo films changed from domain wall motion to domain rotation as the Ag inserted. This was thought to be due to inhibition of domain wall motion by the reduction of Cr grain size and the increase of roughness.

  • PDF

Oxidation Behavior and Magnetic Properties of Nd-Fe-B Based Melt-Spun Ribbons (Nd-Fe-B계 급냉리본의 산화거동과 자기적 특성)

  • Jo, Beom-Rae;Kim, Jin-Gu;Song, Jin-Tae;Gang, Gi-Won
    • Korean Journal of Materials Research
    • /
    • v.5 no.4
    • /
    • pp.483-489
    • /
    • 1995
  • Nd-(Fe, Co)-B합금에 Ni, Al, Ti등을 복합치환하여 그에 따른 산화거동과 자기적 성질의 변화를 조사하였다. 이들 리본의 산호거동은 parabolic한 거동을 나타내고 있으며, Ni 첨가시 매우 낮은 산화량을 나타내었다. 또한 산화된 리본은 Nd-rich상의 우선적 산화에 의해 표면에 요철이 관찰되었으며 Ni 첨가시 그러한 요철은 많이 줄어들었다. 표면의 산화층은 Nd산화물이었고, 이는 입계에 있는 Nd-rich상이 산화되고 이것이 확산 통로로 작용하였다고 생각된다. 산화가 진행됨에 따라 입계상에 의한 domain wall pinning이 약해져 자기특성이 저하하였다. 그러나 Ni 첨가시 이러한 산화거동이 크게 억제되었으며 Ni의 첨가는 Nd-rich상의 산화저항성을 증가시킴으로써 리본의 산화를 억제해 자기특성의 저하를 억제하였다.

  • PDF

The Magnetic Properties of FeBSiNb Alloy Ribbons with High Glass forming Ability (고 비정질 형성능을 가진 FeBSiNb 합금 리본의 자기적 특성)

  • Noh, Tae-Hwan;Kim, Gu-Hyun
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.4
    • /
    • pp.154-159
    • /
    • 2002
  • Amorphous FeBSiNb alloy ribbons having bulk glass forming ability and high saturation magnetic flux density were produced by single-roller melt spinning apparatus in the thickness range of 22∼102㎛. With the increase of thickness, the coercive force and squareness ratio decreased, while maximum permeability and AC permeability increased. However electrical resistivity was almost constant. Furthermore refined and complex magnetic domain structure was observed in thicker ribbons owing to the change in internal magnetic anisotropy. For the alloy with the thickness of 81㎛, small coercive force of 24 mOe and high effective permeability of 12,000 at 1㎑ were obtained, those are considered to be better comparing to the conventional soft magnetic amorphous alloys (∼20 ㎛). The good soft magnetic properties of the thick FeBSiNb amorphous alloys were attributed to the decrease in surface pinning effect during wall motion, appearance of perpendicular anisotropy and resulted domain refinement.

A Study on the Antiferromagnetism and Exchange Anisotropy for Co/Pd Multilayered Thin Films by the Analysis of the Hall Effect (Hall 이력곡선 분해에 의한 Co/Pd 다층박막에서의 Antiferromagnetism 및 Exchange Anisotropy 분석)

  • 정진덕;이행기;김상록;이성래
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.4
    • /
    • pp.269-276
    • /
    • 1993
  • Co/Pd multilayered thin films with various ratios of Co sublayers to Pd sublayers(nCo/nPd = 1/4, 2/4, 3/4, 5/4) were fabricated at different substrate temperatures($R.\;T.,\;100,\;150,\;200\;^{\circ}C$) with the conventional vacuum evaporation method, and their Hall voltage hysteresis curves were measured. These Hall curves were decomposed on the basis of the superpose of the transverse Hall effect term from the magnetizations of Co and Pd sublayers and the magnetoresistivity term, by the optimal fitting method. In the results, both of the ferromagnetic and anti ferromagnetic states coexisted through whole samples, and the uniaxial or unidirectional easy axis type Hall hysteresis curves occured were dependent upon the effects of the exchange anisotropy between both magnetic states and the domain wall pinning by the antiferromagnet inclusions.

  • PDF

Microstructural Effects on DC Bias Characters in FeSiBNi Amorphous Ribbon (FeSiBNi 비정질 리본의 열처리 조건에 따른 미세구조가 직류중첩특성에 미치는 영향)

  • 장용익;김종렬;송용설
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 2000
  • Amorphous Fe$_{79.7}$Si$_{9.3}$B$_{9.7}$Ni$_{1.4}$ ribbon alloys were fabricated by a single roll method. To enhance D. C. bias properties, the magnetic and micro-structural changes have been investigated as the variation of annealing time and condition. The D. C. bias properties were found to be directly related to micro-structural changes. Primary ${\alpha}$-Fe dendrites with 200∼300 nm showed the best D. C. bias properties, which resulted from the magnetic domain wall pinning effect. Due to the differences of cooling rate, the growth shape and distribution of the dendrites is divided into two areas.

  • PDF

Effect of Neutron irradiation in $Fe_{81}B_{13.5}_Si{3.5}C_2$Amorphous Ribbon (비정질 $Fe_{81}B_{13.5}_Si{3.5}C_2$ 리본의 중성자 조사에 따른 자기적 특성변화)

  • 김효철;홍권표;김철기;유성초
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.2
    • /
    • pp.49-52
    • /
    • 2000
  • The changes of magnetic properties in neutron irradiated F $e_{81}$ $B_{13.5}$S $i_{3.5}$ $C_2$ amorphous ribbon were studied by X-ray diffraction, hysteresis loop, temperature dependence of magnetization and complex permeability. The fluences of thermal ( $n_{th}$) and fast ( $n_{f}$) neutron were 6.95$\times$10$^{18}$ $n_{th}$ c $m^{-2}$ and 4.56$\times$10$^{16}$ $n_{f}$c $m^{-2}$ , respectively. The changes of XRD Profiles were not observable at the neutron irradiated sample. The complex permeability spectra showed that the permeability from domain wall motion decreased due to the increase of pinning force against domain motion by the neutron irradiation, and the relaxation frequency of rotational magnetization moved to higher frequency region. The measurement of hysteresis loop showed the increase of magnetic softness, related to rotational magnetization, but saturation magnetization was decreased in neutron irradiation sample. The Curie temperature was decreased in the neutron irradiated sample.e.e.e.

  • PDF