• Title/Summary/Keyword: domain ontology model

Search Result 78, Processing Time 0.031 seconds

Ontology Matching Method Based on Word Embedding and Structural Similarity

  • Hongzhou Duan;Yuxiang Sun;Yongju Lee
    • International journal of advanced smart convergence
    • /
    • v.12 no.3
    • /
    • pp.75-88
    • /
    • 2023
  • In a specific domain, experts have different understanding of domain knowledge or different purpose of constructing ontology. These will lead to multiple different ontologies in the domain. This phenomenon is called the ontology heterogeneity. For research fields that require cross-ontology operations such as knowledge fusion and knowledge reasoning, the ontology heterogeneity has caused certain difficulties for research. In this paper, we propose a novel ontology matching model that combines word embedding and a concatenated continuous bag-of-words model. Our goal is to improve word vectors and distinguish the semantic similarity and descriptive associations. Moreover, we make the most of textual and structural information from the ontology and external resources. We represent the ontology as a graph and use the SimRank algorithm to calculate the structural similarity. Our approach employs a similarity queue to achieve one-to-many matching results which provide a wider range of insights for subsequent mining and analysis. This enhances and refines the methodology used in ontology matching.

A Structure of Domain Ontologies and their Mathematical Models

  • Kleshchev, Alexander S.;Artemjeva, Irene L.
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.410-420
    • /
    • 2001
  • A primitive conceptualization is defined as the set of all intended situations. A non-primitive conceptualization is defined as the set of all the pairs every of which consists of an intended knowledge system and the set of all the situations admitted by the knowledge system. The reality of a domain is considered as the set of all the situation which have ever taken place in the past, are taking place now and will take place in the future. A conceptualization is defined as precise if the set of intended situations is equal to the domain reality. The representation of various elements of a domain ontology in a model of the ontology is considered. These elements are terms for situation description and situations themselves, terms for knowledge description and knowledge systems themselves, mathematical terms and constructions, auxiliary terms and ontological agreements. It has been shown that any ontology representing a conceptualization has to be non-primitive if either (1) a conceptualization contains intended situations of different structures, or (2) a conceptualization contains concepts designated by terms for knowledge description, or (3) a conceptualization contains concept classes and determines properties of the concepts belonging to these classes, but the concepts themselves are introduced by domain knowledge, or (4) some restrictions on meanings of terms for situation description in a conceptualization depend on the meaning of terms for knowledge description.

  • PDF

A Web-Based Domain Ontology Construction Modelling and Application in the Wetland Domain

  • Xing, Jun;Han, Min
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.6
    • /
    • pp.754-759
    • /
    • 2007
  • Methodology of ontology building based on Web resources will not only reduce significantly the ontology construction period, but also enhance the quality of the ontology. Remarkable progress has been achieved in this regard, but they encounter similar difficulties, such as the Web data extraction and knowledge acquisition. This paper researches on the characteristics of ontology construction data, including dynamics, largeness, variation and openness and other features, and the fundamental issue of ontology construction - formalized representation method. Then, the key technologies used in and the difficulties with ontology construction are summarized. A software Model-OntoMaker (Ontology Maker) is designed. The model is innovative in two regards: (1) the improvement of generality: the meta learning machine will dynamically pick appropriate ontology learning methodologies for data of different domains, thus optimizing the results; (2) the merged processing of (semi-) structural and non-structural data. In addition, as known to all wetland researchers, information sharing is vital to wetland exploitation and protection, while wetland ontology construction is the basic task for information sharing. OntoMaker constructs the wetland ontologies, and the model in this work can also be referred to other environmental domains.

  • PDF

Development ontology model for partnership in supply chain networks (Supply Chain 파트너쉽에 관한 Ontology 모델 개발)

  • Lee, Hae-Kyeong;Kim, Tai-Oun
    • 한국IT서비스학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.9-19
    • /
    • 2009
  • SCM은 시장의 변화를 신속하고 파악하고 IT 기술을 활용해 정보를 공유함으로써 변화에 보다 적극적으로 대처해 전체 Supply Chain의 이익을 높이고자 하는 전략적 사고라고 할 수 있다. SCM에서 파트너 선정은 장기적이고 전략적인 관점에서 이루어져야 하는 지식 집약적인 업무 Process이다. 본 연구는 SCM에서 파트너 선정의 절차를 Task Modeling을 통해 재사용 가능한 Knowledge-base를 개발하는 것이다. 이를 위해, 첫 번째로 전문가의 문제 해결 과정을 분석해 문제 해결 과정을 대상으로 한 Problem-Solving Ontology(Task Ontology)를 도출하고, 두 번째로 문제 해결 과정에 필요한 Domain Knowledge를 추출해 파트너 선정 문제 해결에 필요한 Domain Ontology를 개발한다. 끝으로 Problem-Solving Ontology와 Domain Ontology를 Protege를 통해 구현하고자 한다.

  • PDF

ONTOLOGY DESIGN FOR THE EFFICIENT CUSTOMER INFORMATION RETRIEVAL

  • Gu, Mi-Sug;Hwang, Jeong-Hee;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.345-348
    • /
    • 2005
  • Because the current web search engine estimates the similarity of documents, using the frequency of words, many documents irrespective of the user query are provided. To solve these kinds of problems, the semantic web is appearing as a future web. It is possible to provide the service based on the semantic web through ontology which specifies the knowledge in a special domain and defines the concepts of knowledge and the relationships between concepts. In this paper to search the information of potential customers for home-delivery marketing, we model the specific domain for generating the ontology. And we research how to retrieve the information, using the ontology. Therefore, in this paper, we generate the ontology to define the domain about potential customers and develop the search robot which collects the information of customers.

  • PDF

an Automatic Transformation Process for Generating Multi-aspect Social IoT Ontology (다면적 소셜 IoT 도메인 온톨로지 생성을 위한 온톨로지 스키마 변환 프로세스)

  • Kim, SuKyung;Ahn, KeeHong;Kim, GunWoo
    • Smart Media Journal
    • /
    • v.3 no.3
    • /
    • pp.20-25
    • /
    • 2014
  • This research proposes a concept of multi-aspect Social IoT platform that enables human, machine and service to communicate smoothly among them, as well as a means of an automatic process for transforming exiting domain knowledge representation to generic ontology representation used in the platform. Current research focuses on building a machine-based service interoperability using sensor ontology and device ontology. However, to the best of our knowledge, the research on building a semantic model reflecting multi-aspects among human, machine, and service seems to be very insufficient. Therefor, in the research we first build a multi-aspect ontology schema to transform the representation used in each domain as a part of IoT into ontology-based representation, and then develop an automatic process of generating multi-aspect IoT ontology from the domain knowledge based on the schema.

Ontology-based Conceptual Model Building Framework for Discrete Event Simulation (온톨로지를 이용한 이산 사건 시뮬레이션의 개념적 모델 구축 지원에 관한 연구)

  • Park, Jisung;Jeong, Sunghwan;Sohn, Mye
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.1
    • /
    • pp.29-40
    • /
    • 2014
  • Conceptual Modeling is the process of abstracting a model from a real or proposed system. It is probably the most important aspect of a simulation study. Relate works show that the elementary developers devoted little time to understanding how the systems actually worked, namely they didn't build appropriate conceptual model. Thus, the result of simulation is inconsistent because it depends on developer's competence. Although many researchers suggested various techniques enabling developer to build conceptual model, there were several limitations. In this study, to overcome the limitations of existing techniques, we proposed COMBINE-DES (COnceptual Model BuildINg framEwork using ontology for Discrete Event Simulation). The COM-BINE-DES supports expediting the conceptual modeling with Solution ontology generated by Domain ontology and Simulation ontology. Moreover, it provides consistent simulation result regardless of repeated modeling.

A Study for the Generation of the Lightweight Ontologies (경량 온톨로지 생성 연구)

  • Han, Dong-Il;Kwon, Hyeong-In;Baek, Sun-Kyoung
    • Journal of Information Technology Services
    • /
    • v.8 no.1
    • /
    • pp.203-215
    • /
    • 2009
  • This paper illustrates the application of co-occurrence theory to generate lightweight ontologies semi-automatically. The proposed model includes three steps of a (Semi-) Automatic creation of Ontology; (they are conceptually named as) the Syntactic-based Ontology, the Semantic-based Ontology and the Ontology Refinement. Each of these three steps are designed to interactively work together, so as to generate Lightweight Ontologies. The Syntactic-based Ontology step includes generating Association words using co-occurrence in web documents. The Semantic-based Ontology step includes the Alignment large Association words with small Ontology, through the process of semantic relations by contextual terms. Finally, the Ontology Refinement step includes the domain expert to refine the lightweight Ontologies. We also conducted a case study to generate lightweight ontologies in specific domains(news domain). In this paper, we found two directions including (1) employment co-occurrence theory to generate Syntactic-based Ontology automatically and (2) Alignment large Association words with small Ontology to generate lightweight ontologies semi-automatically. So far as the design and the generation of big Ontology is concerned, the proposed research will offer useful implications to the researchers and practitioners so as to improve the research level to the commercial use.

A Study on Location-Based Services Based on Semantic Web

  • Kim, Jong-Woo;Kim, Ju-Yeon;Kim, Chang-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.12
    • /
    • pp.1752-1761
    • /
    • 2007
  • Location-based services are a recent concept that integrates a mobile device's location with other information in order to provide added value to a user. Although Location-based Services provide users with comfortable information, it is a complex task to manage and share heterogeneous and numerous data in decentralized environments. In this paper, we propose the Semantic LBS Model as one of the solution to resolve the problem. The Semantic LBS Model is a LBS middleware model that includes an ontology-based data model for LBS POI information and its processing mechanism based on Semantic Web technologies. Our model enables POI information to be described and retrieved over various domain-specific ontologies based on our proposed POIDL ontology. This mechanism provide rich expressiveness, interoperability, flexibility in describing and using information about POls, and it can enhance POI retrieval services.

  • PDF

Building Domain Ontology through Concept and Relation Classification (개념 및 관계 분류를 통한 분야 온톨로지 구축)

  • Huang, Jin-Xia;Shin, Ji-Ae;Choi, Key-Sun
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.9
    • /
    • pp.562-571
    • /
    • 2008
  • For the purpose of building domain ontology, this paper proposes a methodology for building core ontology first, and then enriching the core ontology with the concepts and relations in the domain thesaurus. First, the top-level concept taxonomy of the core ontology is built using domain dictionary and general domain thesaurus. Then, the concepts of the domain thesaurus are classified into top-level concepts in the core ontology, and relations between broader terms (BT) - narrower terms (NT) and related terms (RT) are classified into semantic relations defined for the core ontology. To classify concepts, a two-step approach is adopted, in which a frequency-based approach is complemented with a similarity-based approach. To classify relations, two techniques are applied: (i) for the case of insufficient training data, a rule-based module is for identifying isa relation out of non-isa ones; a pattern-based approach is for classifying non-taxonomic semantic relations from non-isa. (ii) For the case of sufficient training data, a maximum-entropy model is adopted in the feature-based classification, where k-NN approach is for noisy filtering of training data. A series of experiments show that performances of the proposed systems are quite promising and comparable to judgments by human experts.