International journal of advanced smart convergence
/
v.12
no.3
/
pp.75-88
/
2023
In a specific domain, experts have different understanding of domain knowledge or different purpose of constructing ontology. These will lead to multiple different ontologies in the domain. This phenomenon is called the ontology heterogeneity. For research fields that require cross-ontology operations such as knowledge fusion and knowledge reasoning, the ontology heterogeneity has caused certain difficulties for research. In this paper, we propose a novel ontology matching model that combines word embedding and a concatenated continuous bag-of-words model. Our goal is to improve word vectors and distinguish the semantic similarity and descriptive associations. Moreover, we make the most of textual and structural information from the ontology and external resources. We represent the ontology as a graph and use the SimRank algorithm to calculate the structural similarity. Our approach employs a similarity queue to achieve one-to-many matching results which provide a wider range of insights for subsequent mining and analysis. This enhances and refines the methodology used in ontology matching.
Proceedings of the Korea Inteligent Information System Society Conference
/
2001.01a
/
pp.410-420
/
2001
A primitive conceptualization is defined as the set of all intended situations. A non-primitive conceptualization is defined as the set of all the pairs every of which consists of an intended knowledge system and the set of all the situations admitted by the knowledge system. The reality of a domain is considered as the set of all the situation which have ever taken place in the past, are taking place now and will take place in the future. A conceptualization is defined as precise if the set of intended situations is equal to the domain reality. The representation of various elements of a domain ontology in a model of the ontology is considered. These elements are terms for situation description and situations themselves, terms for knowledge description and knowledge systems themselves, mathematical terms and constructions, auxiliary terms and ontological agreements. It has been shown that any ontology representing a conceptualization has to be non-primitive if either (1) a conceptualization contains intended situations of different structures, or (2) a conceptualization contains concepts designated by terms for knowledge description, or (3) a conceptualization contains concept classes and determines properties of the concepts belonging to these classes, but the concepts themselves are introduced by domain knowledge, or (4) some restrictions on meanings of terms for situation description in a conceptualization depend on the meaning of terms for knowledge description.
Methodology of ontology building based on Web resources will not only reduce significantly the ontology construction period, but also enhance the quality of the ontology. Remarkable progress has been achieved in this regard, but they encounter similar difficulties, such as the Web data extraction and knowledge acquisition. This paper researches on the characteristics of ontology construction data, including dynamics, largeness, variation and openness and other features, and the fundamental issue of ontology construction - formalized representation method. Then, the key technologies used in and the difficulties with ontology construction are summarized. A software Model-OntoMaker (Ontology Maker) is designed. The model is innovative in two regards: (1) the improvement of generality: the meta learning machine will dynamically pick appropriate ontology learning methodologies for data of different domains, thus optimizing the results; (2) the merged processing of (semi-) structural and non-structural data. In addition, as known to all wetland researchers, information sharing is vital to wetland exploitation and protection, while wetland ontology construction is the basic task for information sharing. OntoMaker constructs the wetland ontologies, and the model in this work can also be referred to other environmental domains.
SCM은 시장의 변화를 신속하고 파악하고 IT 기술을 활용해 정보를 공유함으로써 변화에 보다 적극적으로 대처해 전체 Supply Chain의 이익을 높이고자 하는 전략적 사고라고 할 수 있다. SCM에서 파트너 선정은 장기적이고 전략적인 관점에서 이루어져야 하는 지식 집약적인 업무 Process이다. 본 연구는 SCM에서 파트너 선정의 절차를 Task Modeling을 통해 재사용 가능한 Knowledge-base를 개발하는 것이다. 이를 위해, 첫 번째로 전문가의 문제 해결 과정을 분석해 문제 해결 과정을 대상으로 한 Problem-Solving Ontology(Task Ontology)를 도출하고, 두 번째로 문제 해결 과정에 필요한 Domain Knowledge를 추출해 파트너 선정 문제 해결에 필요한 Domain Ontology를 개발한다. 끝으로 Problem-Solving Ontology와 Domain Ontology를 Protege를 통해 구현하고자 한다.
Because the current web search engine estimates the similarity of documents, using the frequency of words, many documents irrespective of the user query are provided. To solve these kinds of problems, the semantic web is appearing as a future web. It is possible to provide the service based on the semantic web through ontology which specifies the knowledge in a special domain and defines the concepts of knowledge and the relationships between concepts. In this paper to search the information of potential customers for home-delivery marketing, we model the specific domain for generating the ontology. And we research how to retrieve the information, using the ontology. Therefore, in this paper, we generate the ontology to define the domain about potential customers and develop the search robot which collects the information of customers.
This research proposes a concept of multi-aspect Social IoT platform that enables human, machine and service to communicate smoothly among them, as well as a means of an automatic process for transforming exiting domain knowledge representation to generic ontology representation used in the platform. Current research focuses on building a machine-based service interoperability using sensor ontology and device ontology. However, to the best of our knowledge, the research on building a semantic model reflecting multi-aspects among human, machine, and service seems to be very insufficient. Therefor, in the research we first build a multi-aspect ontology schema to transform the representation used in each domain as a part of IoT into ontology-based representation, and then develop an automatic process of generating multi-aspect IoT ontology from the domain knowledge based on the schema.
Korean Journal of Computational Design and Engineering
/
v.19
no.1
/
pp.29-40
/
2014
Conceptual Modeling is the process of abstracting a model from a real or proposed system. It is probably the most important aspect of a simulation study. Relate works show that the elementary developers devoted little time to understanding how the systems actually worked, namely they didn't build appropriate conceptual model. Thus, the result of simulation is inconsistent because it depends on developer's competence. Although many researchers suggested various techniques enabling developer to build conceptual model, there were several limitations. In this study, to overcome the limitations of existing techniques, we proposed COMBINE-DES (COnceptual Model BuildINg framEwork using ontology for Discrete Event Simulation). The COM-BINE-DES supports expediting the conceptual modeling with Solution ontology generated by Domain ontology and Simulation ontology. Moreover, it provides consistent simulation result regardless of repeated modeling.
This paper illustrates the application of co-occurrence theory to generate lightweight ontologies semi-automatically. The proposed model includes three steps of a (Semi-) Automatic creation of Ontology; (they are conceptually named as) the Syntactic-based Ontology, the Semantic-based Ontology and the Ontology Refinement. Each of these three steps are designed to interactively work together, so as to generate Lightweight Ontologies. The Syntactic-based Ontology step includes generating Association words using co-occurrence in web documents. The Semantic-based Ontology step includes the Alignment large Association words with small Ontology, through the process of semantic relations by contextual terms. Finally, the Ontology Refinement step includes the domain expert to refine the lightweight Ontologies. We also conducted a case study to generate lightweight ontologies in specific domains(news domain). In this paper, we found two directions including (1) employment co-occurrence theory to generate Syntactic-based Ontology automatically and (2) Alignment large Association words with small Ontology to generate lightweight ontologies semi-automatically. So far as the design and the generation of big Ontology is concerned, the proposed research will offer useful implications to the researchers and practitioners so as to improve the research level to the commercial use.
Location-based services are a recent concept that integrates a mobile device's location with other information in order to provide added value to a user. Although Location-based Services provide users with comfortable information, it is a complex task to manage and share heterogeneous and numerous data in decentralized environments. In this paper, we propose the Semantic LBS Model as one of the solution to resolve the problem. The Semantic LBS Model is a LBS middleware model that includes an ontology-based data model for LBS POI information and its processing mechanism based on Semantic Web technologies. Our model enables POI information to be described and retrieved over various domain-specific ontologies based on our proposed POIDL ontology. This mechanism provide rich expressiveness, interoperability, flexibility in describing and using information about POls, and it can enhance POI retrieval services.
For the purpose of building domain ontology, this paper proposes a methodology for building core ontology first, and then enriching the core ontology with the concepts and relations in the domain thesaurus. First, the top-level concept taxonomy of the core ontology is built using domain dictionary and general domain thesaurus. Then, the concepts of the domain thesaurus are classified into top-level concepts in the core ontology, and relations between broader terms (BT) - narrower terms (NT) and related terms (RT) are classified into semantic relations defined for the core ontology. To classify concepts, a two-step approach is adopted, in which a frequency-based approach is complemented with a similarity-based approach. To classify relations, two techniques are applied: (i) for the case of insufficient training data, a rule-based module is for identifying isa relation out of non-isa ones; a pattern-based approach is for classifying non-taxonomic semantic relations from non-isa. (ii) For the case of sufficient training data, a maximum-entropy model is adopted in the feature-based classification, where k-NN approach is for noisy filtering of training data. A series of experiments show that performances of the proposed systems are quite promising and comparable to judgments by human experts.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.