• Title/Summary/Keyword: domain dynamics

Search Result 471, Processing Time 0.032 seconds

Multi-Domain Model for Electric Traction Drives Using Bond Graphs

  • Silva, Luis I.;De La Barrera, Pablo M.;De Angelo, Cristian H.;Aguilera, Facundo;Garcia, Guillermo O.
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.439-448
    • /
    • 2011
  • In this work the Multi-Domain model of an electric vehicle is developed. The electric domain model consists on the traction drive and allows including faults associated with stator winding. The thermal model is based on a spatial discretization. It receives the power dissipated in the electric domain, it interacts with the environment and provides the temperature distribution in the induction motor. The mechanical model is a half vehicle model. Given that all models are obtained using the same approach (Bond Graph) their integration becomes straightforward. This complete model allows simulating the whole system dynamics and the analysis of electrical/mechanical/thermal interaction. First, experimental results are aimed to validate the proposed model. Then, simulation results illustrate the interaction between the different domains and highlight the capability of including faults.

Study on Magnetization Reversal Behavior in Ferromagnetic Co0.5Fe0.5 Alloy Films (강자성 Co0.5Fe0.5 합금 박막에서의 자화역전현상 연구)

  • Ryu, Kwang-Su
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.6
    • /
    • pp.180-184
    • /
    • 2015
  • We have investigated the magnetization reversal behavior in ferromagnetic $Co_{0.5}Fe_{0.5}$ alloy films using the magneto-optical Kerr microscope capable of the direct observation of time-resolved domain patterns. Interestingly enough, as the sample thickness increases the magnetization reversal behavior becomes changed from a single domain wall motion to the random nucleations of domains. Also, from the stochastic analysis of the domain jump sizes during the domain wall motion, it was found that the magnetization reversal behavior in the samples shows the critical scaling behavior with the critical exponent of ${\tau}{\sim}1.33$.

The Contact and Parallel Analysis of SPH Using Cartesian Coordinate Based Domain Decomposition Method (Cartesian 좌표기반 동적영역분할을 고려한 SPH의 충돌 및 병렬해석)

  • Moonho Tak
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.4
    • /
    • pp.13-20
    • /
    • 2024
  • In this paper, a parallel analysis algorithm for Smoothed Particle Hydrodynamics (SPH), one of the numerical methods for fluidic materials, is introduced. SPH, which is a meshless method, can represent the behavior of a continuum using a particle-based approach, but it demands substantial computational resources. Therefore, parallel analysis algorithms are essential for SPH simulations. The domain decomposition algorithm, which divides the computational domain into partitions to be independently analyzed, is the most representative method among parallel analysis algorithms. In Discrete Element Method (DEM) and Molecular Dynamics (MD), the Cartesian coordinate-based domain decomposition method is popularly used because it offers advantages in quickly and conveniently accessing particle positions. However, in SPH, it is important to share particle information among partitioned domains because SPH particles are defined based on information from nearby particles within the smoothing length. Additionally, maintaining CPU load balance is crucial. In this study, a highly parallel efficient algorithm is proposed to dynamically minimize the size of orthogonal domain partitions to prevent excess CPU utilization. The efficiency of the proposed method was validated through numerical analysis models. The parallel efficiency of the proposed method is evaluated for up to 30 CPUs for fluidic models, achieving 90% parallel efficiency for up to 28 physical cores.

Nonequilibrium Domain Configurations Undergoing Large Angle Rotations in Mesoscopic Magnetic Thin Film Elements (retracted)

  • Choi, B.C.;Hong, Y.K.;Rudge J.;Donohoe G.;Xiao Q.F.
    • Journal of Magnetics
    • /
    • v.11 no.2
    • /
    • pp.61-65
    • /
    • 2006
  • The physical origin of complex dynamic domain configuration in nonequilibrium magnetic systems with mesoscopic length scales has been studied. An increasing complexity in the spatial feature of the evolution is found to accompany the increasing reversal speed, when a ferromagnetic element is driven by progressively faster switching fields applied antiparallel to the initial magnetization direction. As reversal rates approach the characteristic precession frequencies of spin fluctuations, the thermal energy can boost the magnetization into local configurations which are completely different from those experienced during quasistatic reversal. The sensitive dependence of the spatial pattern on switching speed can be understood in terms of a dynamic exchange interaction of thermally excited spins; the coherent modulation of the spins is strongly dependent on the rise time of switching pulses.

Possible roles of amyloid intracellular domain of amyloid precursor protein

  • Chang, Keun-A;Suh, Yoo-Hun
    • BMB Reports
    • /
    • v.43 no.10
    • /
    • pp.656-663
    • /
    • 2010
  • Amyloid precursor protein (APP), which is critically involved in the pathogenesis of Alzheimer's disease (AD), is cleaved by gamma/epsilon-secretase activity and results in the generation of different lengths of the APP Intracellular C-terminal Domain (AICD). In spite of its small size and short half-life, AICD has become the focus of studies on AD pathogenesis. Recently, it was demonstrated that AICD binds to different intracellular binding partners ('adaptor protein'), which regulate its stability and cellular localization. In terms of choice of adaptor protein, phosphorylation seems to play an important role. AICD and its various adaptor proteins are thought to take part in various cellular events, including regulation of gene transcription, apoptosis, calcium signaling, growth factor, and $NF-{\kappa}B$ pathway activation, as well as the production, trafficking, and processing of APP, and the modulation of cytoskeletal dynamics. This review discusses the possible roles of AICD in the pathogenesis of neurodegenerative diseases including AD.

On the Modeling of Dynamic Systems

  • Suk, Jinyoung;Kim, Youdan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.1
    • /
    • pp.78-92
    • /
    • 2001
  • In this paper, several dynamic systems are modeled using the time domain finite element method. Galerkins' Weak Principle is used to model the general second-order mechanical system, and is applied to a simple pendulum dynamics. Problems caused by approximating the final momentum are also investigated. Extending the research, some dynamic analysis methods are suggested for the hybrid coordinate systems that have both slew and flexible modes. The proposed methods are based on both Extended Hamilton's Principle and Galerkin's Weak Principle. The matrix wave equation is propagated in space domain, satisfying the geometric/natural boundary conditions. As a result, the flexible motion can be obtained compatible with the applied control input. Numerical example is shown to demonstrate the effectiveness of the proposed modeling methods for the hybrid coordinate systems.

  • PDF

Dynamic analysis of structures in frequency domain by a new set of Ritz vectors

  • Aliasghar Arjmandi, S.;Lotfi, Vahid
    • Structural Engineering and Mechanics
    • /
    • v.39 no.5
    • /
    • pp.703-716
    • /
    • 2011
  • The accurate dynamic analysis of structures is usually performed by a fine finite element discretization with very large number of degrees of freedom. Apart from modal analysis, one can reduce the number of final equations by assuming the deformed shape of the structure as a linear combination of independent Ritz vectors. The efficiency of this method relies heavily on the vectors selected. In this paper, a new set of Ritz vectors is proposed. It is primarily proved that these vectors are linearly independent. Subsequently, various two and three-dimensional examples are analyzed based on the proposed method. In each case, the results are compared with the ones obtained based on usual Ritz and modal analysis methods. It is finally concluded that the proposed method is very effective and efficient method for dynamic analysis of structures in frequency domain.

Mechanical Model of Displacement-based Time Domain Transmitting Boundary for Flexible Dam-Reservoir Interactions (유연한 댐-호소의 상호작용을 위한 변위 기초 시간 영역 전달 경계의 역학적 모델)

  • 이진호;김재관;조정래
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.232-237
    • /
    • 2003
  • A new displacement-based transmitting boundary is developed for the transient analysis of dynamics interactions between flexible dam body and reservoir impounding compressible water The mechanical model is derived analytically in time domain from the kernel function, Bessel function, appearing in the convolution integral and corresponding mechanical model is developed that consists of mass, damping and stiffness matrices. The resulting system of, equations uses displacement degrees of freedom. Hence it can be coupled directly with the displacement-based solid finite element model of dam body, linear of nonlinear. The method was applied to the rigid and flexible dam models. The results showed very good agreement : with the semi-analytic frequency domain solutions.

  • PDF

Three-dimensional Detonation Cell Structures in a Circular Tube

  • Cho, D.R.;Won, S.H.;Shin, Edward J.R.;Choi, J.Y.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.597-601
    • /
    • 2008
  • Three-dimensional structures of detonation wave propagating in circular tube were investigated. Inviscid fluid dynamics equations coupled with a conservation equation of reaction progress variable were analyzed by a MUSCL-type TVD scheme and four stage Runge-Kutta time integration. Variable-$\gamma$ formulation was used to account for the variable properties between unburned and burned states and the chemical reaction was modeled by using a simplified one-step irreversible kinetics model. The computational code was parallelized based on domain decomposition technique using MPI-II message passing library. The computations were carried out using a home made Windows based PC cluster having 160 AMD AthloxXP and Athlon64 processor. The computational domain consisted of through a roundshaped tube with wall conditions. As an initial condition, analytical ZND solution was distributed over the computational domain with disturbances. The disturbances has circumferential large gradient. The unsteady computational results in three-dimension show the detailed mechanisms of multi-cell mode of detonation wave instabilities resulting diamond shape in smoked-foil record.

  • PDF