• 제목/요약/키워드: domain analysis

Search Result 5,906, Processing Time 0.04 seconds

Improvement of Teachers' Scientific Knowledge researched by Difficulty and Development of teachers experienced in process of Conducting Scientific Inquiry (과학적 탐구 수행에서 초등교사가 겪은 어려움과 성장으로 탐색한 교사의 과학적 지식 향상 방안)

  • Lee, Dongseung;Park, Jongseok
    • Journal of the Korean Chemical Society
    • /
    • v.66 no.1
    • /
    • pp.42-49
    • /
    • 2022
  • Many elementary school teachers' lack of scientific knowledge reveal as several problems in teaching science. Thus, elementary school teachers need to improve their scientific knowledge, but there is the limit to improve the teachers' scientific knowledge through activities based on lecture that conducted in process of training and retraining them. Therefore, Improvement for training science teacher to improve scientific knowledge of elementary school teachers would be searched in this study. Depth interview was conducted toward three elementary school teachers, who had conducted action research, to improve content knowledge of material domain within teaching process and elementary school science. Based on result of the interview, difficulty and development that the three teachers were commonly experienced in process of conducting scientific inquiry in action research were analyzed. One of the difficulties of the inquiry were to figure out how the three teachers, who participated in the interview, understand specific concept, what they do not understand, and what they should study more to understand the concept. And there was a circumstance that the teachers did not know how to apply procedural knowledge, which learned explicitly in the process of setting plan for conducting research, into real context. Since there was difference between knowledge that they understand disjunctively and context that observed in real circumstance, they faced difficulty. However, the teachers conducted analysis of topic, planning research, conducting research, discussion of the result by themselves with those difficulties Thus, the teachers mentioned that not only content knowledge had been improved, but understanding of procedural knowledge, which is not intended to improve, had been also improved. Besides, they also mentioned that comprehensive understanding content knowledge, which they already understood, was also helpful. And the teachers suggest that if there were chance to discuss and examine the scientific practices by consisting of group with colleagues rather than conducting it individually it would more efficient studying. Considering their suggestion, direction of training elementary school teachers for improving their scientific knowledge should be improved in a way to understand science concepts based on direct research about context that is generated in circumstance of studying group of the teachers. Consequently, it would contribute to improvement of teaching science by combining teachers' practice and understanding.

Long-term Effects of Change in Family Structure On Achievement During Transition to Adulthood : Focusing on the effect of parental divorce/death on health condition, depression and educational attainment (가족구조의 변화가 성인이행기 발달에 미치는 영향 : 주관적 건강상태, 우울, 교육성취를 중심으로)

  • Kim, Yeonwoo
    • Korean Journal of Social Welfare Studies
    • /
    • v.41 no.4
    • /
    • pp.225-246
    • /
    • 2010
  • The family environment children are exposed to growing up greatly influences their future potential and achievements. Previous findings show that changes in family structure during childhood, particularly those resulting from divorce or death, cause lasting negative consequence that affect the child physically, psychologically, economically, and socially. Unfortunately, single-parent households are becoming increasingly common in Korea, nearly doubling to more than a million cases in the last two decades. Existing domestic and international studies of this area tend to focus on the short-term effects of growing up in a single-parent household. In addition, these studies group their samples in ways that result in findings that may be too broad or are not necessarily an accurate representation of the subjects. This study attempts to address some of these shortcomings by focusing on the long-term effects of how changes in family structure early in children's lives affect achievement during their transition to adulthood. In addition, it takes into account the development cycle the child is in at the time of family restructuring, and what kind of long-term effects result from that. In this analysis, we find that there are several cases of statistically significantly differences in domain achievement depending on the developmental stage the child was in when the parental divorce or death occurred. The findings indicate that changes in family structure during the infant/toddler period influence health condition and depression, while changes in family structure during middle-childhood and adolescence do not. Meanwhile, changes in family structure during any point in the developmental stages have negative effects on educational attainment, with the severity of these negative effects depending on when the family changes occur. The negative effect on educational attainment is most prominent when a change in family structure occurs during the infant/toddler period, followed by adolescence, then middle-childhood.

Beyond Platforms to Ecosystems: Research on the Metaverse Industry Ecosystem Utilizing Information Ecology Theory (플랫폼을 넘어 생태계로: Information Ecology Theory를 활용한 메타버스 산업 생태계연구 )

  • Seokyoung Shin;Jaiyeol Son
    • Information Systems Review
    • /
    • v.25 no.4
    • /
    • pp.131-159
    • /
    • 2023
  • Recently, amidst the backdrop of the COVID-19 pandemic shifting towards an endemic phase, there has been a rise in discussions and debates about the future of the metaverse. Simultaneously, major metaverse platforms like Roblox have been launching services integrated with generative AI, and Apple's mixed reality hardware, Vision Pro, has been announced, creating new expectations for the metaverse. In this situation where the outlook for the metaverse is divided, it is crucial to diagnose the metaverse from an ecosystem perspective, examine its key ecological features, driving forces for development, and future possibilities for advancement. This study utilized Wang's (2021) Information Ecology Theory (IET) framework, which is representative of ecosystem research in the field of Information Systems (IS), to derive the Metaverse Industrial Ecosystem (MIE). The analysis revealed that the MIE consists of four main domains: Tech Landscape, Category Ecosystem, Metaverse Platform, and Product/Service Ecosystem. It was found that the MIE exhibits characteristics such as digital connectivity, the integration of real and virtual worlds, value creation capabilities, and value sharing (Web 3.0). Furthermore, the interactions among the domains within the MIE and the four characteristics of the ecosystem were identified as driving forces for the development of the MIE at an ecosystem level. Additionally, the development of the MIE at an ecosystem level was categorized into three distinct stages: Narrow Ecosystem, Expanded Ecosystem, and Everywhere Ecosystem. It is anticipated that future advancements in related technologies and industries, such as robotics, AI, and 6G, will promote the transition from the current Expanded Ecosystem level of the MIE to an Everywhere Ecosystem level, where the connection between the real and virtual worlds is pervasive. This study provides several implications. Firstly, it offers a foundational theory and analytical framework for ecosystem research, addressing a gap in previous metaverse studies. It also presents various research topics within the metaverse domain. Additionally, it establishes an academic foundation that integrates concept definition research and impact studies, which are key areas in metaverse research. Lastly, referring to the developmental stages and conditions proposed in this study, businesses and governments can explore future metaverse markets and related technologies. They can also consider diverse metaverse business strategies. These implications are expected to guide the exploration of the emerging metaverse market and facilitate the evaluation of various metaverse business strategies.

Analysis of Micro-Sedimentary Structure Characteristics Using Ultra-High Resolution UAV Imagery: Hwangdo Tidal Flat, South Korea (초고해상도 무인항공기 영상을 이용한 한국 황도 갯벌의 미세 퇴적 구조 특성 분석)

  • Minju Kim;Won-Kyung Baek;Hoi Soo Jung;Joo-Hyung Ryu
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.3
    • /
    • pp.295-305
    • /
    • 2024
  • This study aims to analyze the micro-sedimentary structures of the Hwangdo tidal flats using ultra-high resolution unmanned aerial vehicle (UAV) data. Tidal flats, located in the transitional area between land and sea, constantly change due to tidal activities and provide a unique environment important for understanding sedimentary processes and environmental conditions. Traditional field observation methods are limited in spatial and temporal coverage, and existing satellite imagery does not provide sufficient resolution to study micro-sedimentary structures. To overcome these limitations, high-resolution images of the Hwangdo tidal flats in Chungcheongnam-do were acquired using UAVs. This area has experienced significant changes in its sedimentary environment due to coastal development projects such as sea wall construction. From May 17 to 18, 2022, sediment samples were collected from 91 points during field surveys and 25 in-situ points were intensively analyzed. UAV data with a spatial resolution of approximately 0.9 mm allowed identifying and extracting parameters related to micro-sedimentary structures. For mud cracks, the length of the major axis of the polygons was extracted, and the wavelength and ripple symmetry index were extracted for ripple marks. The results of the study showed that in areas with mud content above 80%, mud cracks formed at an average major axis length of 37.3 cm. In regions with sand content above 60%, ripples with an average wavelength of 8 cm and a ripple symmetry index of 2.0 were formed. This study demonstrated that micro-sedimentary structures of tidal flats can be effectively analyzed using ultra-high resolution UAV data without field surveys. This highlights the potential of UAV technology as an important tool in environmental monitoring and coastal management and shows its usefulness in the study of sedimentary structures. In addition, the results of this study are expected to serve as baseline data for more accurate sedimentary facies classification.

A Study on the Priority of RoboAdvisor Selection Factors: From the Perspective of Analyzing Differences between Users and Providers Using AHP (로보어드바이저 선정요인의 우선순위에 관한 연구: AHP를 이용한 사용자와 제공자의 차이분석 관점으로)

  • Young Woong Woo;Jae In Oh;Yun Hi Chang
    • Information Systems Review
    • /
    • v.25 no.2
    • /
    • pp.145-162
    • /
    • 2023
  • Asset management is a complex and difficult field that requires insight into numerous variables and even human psychology. Thus, it has traditionally been the domain of professionals, and these services have been expensive to obtain. Changes are taking place in these markets, and the driving force is the digital revolution, so-called the fourth industrial revolution. Among them, the Robo-Advisor service using artificial intelligence technology is the highlight. The reason is that it is possible to popularize investment advisory services with convenient accessibility and low cost. This study aims to clarify what factors are critically important when selecting robo-advisors for service users and providers in Korea, and what perception differences exist in the selection factors between user and provider groups. The framework of the study was based on the marketing mix 4C model, and the design and analysis of the model used Delphi survey and AHP. Through the study design, 4 main criteria and 15 sub-criteria were derived, and the findings of the study are as follows. First, the importance of the four main criteria was in the order of customer needs > customer convenience > customer cost > customer communication for both groups. Second, looking at the 15 sub-criteria, it was found that investment purpose coverage, investment propensity coverage, fee level and accessibility factors were the most important. Third, when comparing between groups, the user group found that the fee level and accessibility factors were the most important, and the provider group recognized the investment purpose coverage and investment propensity coverage factors as important. This study derived useful implications in practice. First, when designing for the spread of the robo-advisor service, the basis for constructing a user-oriented system was prepared by considering the priority of importance according to the weight difference between the four main criteria and the 15 sub-criteria. In addition, the difference in priority of each sub-criteria shown in the group comparison and the cause of the sub-criteria with large weight differences were identified. In addition, it was suggested that it is very important to form a consensus to resolve the difference in perception of factors between those in charge of strategy and marketing and system development within the provider group. Academically, it is meaningful in that it is an early study that presented various perspectives and perspectives by deriving a number of robo-advisor selection factors. Through the findings of this study, it is expected that a successful user-oriented robo-advisor system can be built and spread in Korea to help users.

Deep Learning-based Fracture Mode Determination in Composite Laminates (복합 적층판의 딥러닝 기반 파괴 모드 결정)

  • Muhammad Muzammil Azad;Atta Ur Rehman Shah;M.N. Prabhakar;Heung Soo Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.4
    • /
    • pp.225-232
    • /
    • 2024
  • This study focuses on the determination of the fracture mode in composite laminates using deep learning. With the increase in the use of laminated composites in numerous engineering applications, the insurance of their integrity and performance is of paramount importance. However, owing to the complex nature of these materials, the identification of fracture modes is often a tedious and time-consuming task that requires critical domain knowledge. Therefore, to alleviate these issues, this study aims to utilize modern artificial intelligence technology to automate the fractographic analysis of laminated composites. To accomplish this goal, scanning electron microscopy (SEM) images of fractured tensile test specimens are obtained from laminated composites to showcase various fracture modes. These SEM images are then categorized based on numerous fracture modes, including fiber breakage, fiber pull-out, mix-mode fracture, matrix brittle fracture, and matrix ductile fracture. Next, the collective data for all classes are divided into train, test, and validation datasets. Two state-of-the-art, deep learning-based pre-trained models, namely, DenseNet and GoogleNet, are trained to learn the discriminative features for each fracture mode. The DenseNet models shows training and testing accuracies of 94.01% and 75.49%, respectively, whereas those of the GoogleNet model are 84.55% and 54.48%, respectively. The trained deep learning models are then validated on unseen validation datasets. This validation demonstrates that the DenseNet model, owing to its deeper architecture, can extract high-quality features, resulting in 84.44% validation accuracy. This value is 36.84% higher than that of the GoogleNet model. Hence, these results affirm that the DenseNet model is effective in performing fractographic analyses of laminated composites by predicting fracture modes with high precision.

Ensemble of Nested Dichotomies for Activity Recognition Using Accelerometer Data on Smartphone (Ensemble of Nested Dichotomies 기법을 이용한 스마트폰 가속도 센서 데이터 기반의 동작 인지)

  • Ha, Eu Tteum;Kim, Jeongmin;Ryu, Kwang Ryel
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.4
    • /
    • pp.123-132
    • /
    • 2013
  • As the smartphones are equipped with various sensors such as the accelerometer, GPS, gravity sensor, gyros, ambient light sensor, proximity sensor, and so on, there have been many research works on making use of these sensors to create valuable applications. Human activity recognition is one such application that is motivated by various welfare applications such as the support for the elderly, measurement of calorie consumption, analysis of lifestyles, analysis of exercise patterns, and so on. One of the challenges faced when using the smartphone sensors for activity recognition is that the number of sensors used should be minimized to save the battery power. When the number of sensors used are restricted, it is difficult to realize a highly accurate activity recognizer or a classifier because it is hard to distinguish between subtly different activities relying on only limited information. The difficulty gets especially severe when the number of different activity classes to be distinguished is very large. In this paper, we show that a fairly accurate classifier can be built that can distinguish ten different activities by using only a single sensor data, i.e., the smartphone accelerometer data. The approach that we take to dealing with this ten-class problem is to use the ensemble of nested dichotomy (END) method that transforms a multi-class problem into multiple two-class problems. END builds a committee of binary classifiers in a nested fashion using a binary tree. At the root of the binary tree, the set of all the classes are split into two subsets of classes by using a binary classifier. At a child node of the tree, a subset of classes is again split into two smaller subsets by using another binary classifier. Continuing in this way, we can obtain a binary tree where each leaf node contains a single class. This binary tree can be viewed as a nested dichotomy that can make multi-class predictions. Depending on how a set of classes are split into two subsets at each node, the final tree that we obtain can be different. Since there can be some classes that are correlated, a particular tree may perform better than the others. However, we can hardly identify the best tree without deep domain knowledge. The END method copes with this problem by building multiple dichotomy trees randomly during learning, and then combining the predictions made by each tree during classification. The END method is generally known to perform well even when the base learner is unable to model complex decision boundaries As the base classifier at each node of the dichotomy, we have used another ensemble classifier called the random forest. A random forest is built by repeatedly generating a decision tree each time with a different random subset of features using a bootstrap sample. By combining bagging with random feature subset selection, a random forest enjoys the advantage of having more diverse ensemble members than a simple bagging. As an overall result, our ensemble of nested dichotomy can actually be seen as a committee of committees of decision trees that can deal with a multi-class problem with high accuracy. The ten classes of activities that we distinguish in this paper are 'Sitting', 'Standing', 'Walking', 'Running', 'Walking Uphill', 'Walking Downhill', 'Running Uphill', 'Running Downhill', 'Falling', and 'Hobbling'. The features used for classifying these activities include not only the magnitude of acceleration vector at each time point but also the maximum, the minimum, and the standard deviation of vector magnitude within a time window of the last 2 seconds, etc. For experiments to compare the performance of END with those of other methods, the accelerometer data has been collected at every 0.1 second for 2 minutes for each activity from 5 volunteers. Among these 5,900 ($=5{\times}(60{\times}2-2)/0.1$) data collected for each activity (the data for the first 2 seconds are trashed because they do not have time window data), 4,700 have been used for training and the rest for testing. Although 'Walking Uphill' is often confused with some other similar activities, END has been found to classify all of the ten activities with a fairly high accuracy of 98.4%. On the other hand, the accuracies achieved by a decision tree, a k-nearest neighbor, and a one-versus-rest support vector machine have been observed as 97.6%, 96.5%, and 97.6%, respectively.

Critical Success Factor of Noble Payment System: Multiple Case Studies (새로운 결제서비스의 성공요인: 다중사례연구)

  • Park, Arum;Lee, Kyoung Jun
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.59-87
    • /
    • 2014
  • In MIS field, the researches on payment services are focused on adoption factors of payment service using behavior theories such as TRA(Theory of Reasoned Action), TAM(Technology Acceptance Model), and TPB (Theory of Planned Behavior). The previous researches presented various adoption factors according to types of payment service, nations, culture and so on even though adoption factors of identical payment service were presented differently by researchers. The payment service industry relatively has strong path dependency to the existing payment methods so that the research results on the identical payment service are different due to payment culture of nation. This paper aims to suggest a successful adoption factor of noble payment service regardless of nation's culture and characteristics of payment and prove it. In previous researches, common adoption factors of payment service are convenience, ease of use, security, convenience, speed etc. But real cases prove the fact that adoption factors that the previous researches present are not always critical to success to penetrate a market. For example, PayByPhone, NFC based parking payment service, successfully has penetrated to early market and grown. In contrast, Google Wallet service failed to be adopted to users despite NFC based payment method which provides convenience, security, ease of use. As shown in upper case, there remains an unexplained aspect. Therefore, the present research question emerged from the question: "What is the more essential and fundamental factor that should takes precedence over factors such as provides convenience, security, ease of use for successful penetration to market". With these cases, this paper analyzes four cases predicted on the following hypothesis and demonstrates it. "To successfully penetrate a market and sustainably grow, new payment service should find non-customer of the existing payment service and provide noble payment method so that they can use payment method". We give plausible explanations for the hypothesis using multiple case studies. Diners club, Danal, PayPal, Square were selected as a typical and successful cases in each category of payment service. The discussion on cases is primarily non-customer analysis that noble payment service targets on to find the most crucial factor in the early market, we does not attempt to consider factors for business growth. We clarified three-tier non-customer of the payment method that new payment service targets on and elaborated how new payment service satisfy them. In case of credit card, this payment service target first tier of non-customer who can't pay for because they don't have any cash temporarily but they have regular income. So credit card provides an opportunity which they can do economic activities by delaying the date of payment. In a result of wireless phone payment's case study, this service targets on second of non-customer who can't use online payment because they concern about security or have to take a complex process and learn how to use online payment method. Therefore, wireless phone payment provides very convenient payment method. Especially, it made group of young pay for a little money without a credit card. Case study result of PayPal, online payment service, shows that it targets on second tier of non-customer who reject to use online payment service because of concern about sensitive information leaks such as passwords and credit card details. Accordingly, PayPal service allows users to pay online without a provision of sensitive information. Final Square case result, Mobile POS -based payment service, also shows that it targets on second tier of non-customer who can't individually transact offline because of cash's shortness. Hence, Square provides dongle which function as POS by putting dongle in earphone terminal. As a result, four cases made non-customer their customer so that they could penetrate early market and had been extended their market share. Consequently, all cases supported the hypothesis and it is highly probable according to 'analytic generation' that case study methodology suggests. We present for judging the quality of research designs the following. Construct validity, internal validity, external validity, reliability are common to all social science methods, these have been summarized in numerous textbooks(Yin, 2014). In case study methodology, these also have served as a framework for assessing a large group of case studies (Gibbert, Ruigrok & Wicki, 2008). Construct validity is to identify correct operational measures for the concepts being studied. To satisfy construct validity, we use multiple sources of evidence such as the academic journals, magazine and articles etc. Internal validity is to seek to establish a causal relationship, whereby certain conditions are believed to lead to other conditions, as distinguished from spurious relationships. To satisfy internal validity, we do explanation building through four cases analysis. External validity is to define the domain to which a study's findings can be generalized. To satisfy this, replication logic in multiple case studies is used. Reliability is to demonstrate that the operations of a study -such as the data collection procedures- can be repeated, with the same results. To satisfy this, we use case study protocol. In Korea, the competition among stakeholders over mobile payment industry is intensifying. Not only main three Telecom Companies but also Smartphone companies and service provider like KakaoTalk announced that they would enter into mobile payment industry. Mobile payment industry is getting competitive. But it doesn't still have momentum effect notwithstanding positive presumptions that will grow very fast. Mobile payment services are categorized into various technology based payment service such as IC mobile card and Application payment service of cloud based, NFC, sound wave, BLE(Bluetooth Low Energy), Biometric recognition technology etc. Especially, mobile payment service is discontinuous innovations that users should change their behavior and noble infrastructure should be installed. These require users to learn how to use it and cause infra-installation cost to shopkeepers. Additionally, payment industry has the strong path dependency. In spite of these obstacles, mobile payment service which should provide dramatically improved value as a products and service of discontinuous innovations is focusing on convenience and security, convenience and so on. We suggest the following to success mobile payment service. First, non-customers of the existing payment service need to be identified. Second, needs of them should be taken. Then, noble payment service provides non-customer who can't pay by the previous payment method to payment method. In conclusion, mobile payment service can create new market and will result in extension of payment market.

Medical Radiation Exposure Dose of Workers in the Private Study of the Job Function (의료기관 방사선 종사자의 직무별 개인피폭선량에 관한 연구)

  • Kang, Chun-Goo;Oh, Ki-Baek;Park, Hoon-Hee
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.2
    • /
    • pp.3-12
    • /
    • 2011
  • Purpose: With increasing medical use of radiation and radioactive isotopes, there is a need to better manage the risk of radiation exposure. This study aims to grasp and analyze the individual radiation exposure situations of radiation-related workers in a medical facility by specific job, in order to instill awareness of radiation danger and to assist in safety and radiation exposure management for such workers. Materials and Methods: From January 1, 2010 December 31, 2010, medical practitioners working in the radiation is classified as a regular personal radiation dosimetry, and subsequently one year 540 people managed investigation department to target workers, dose sectional area, working period, identify the job function-related tasks for a deep dose, respectively, the annual average radiation dose were analyzed. Frequency analysis methods include ANOVA was performed. Results: Medical radiation workers in the department an annual radiation dose of Nuclear and 4.57 mSv a was highest, dose zone-specific distribution of nuclear medicine and in the 5.01~19.05 mSv in the high dose area distribution showed departmental radiation four of the annual radiation dose of Nuclear and 7.14 mSv showed the highest radiation dose. More work an average annual radiation dose according to the job function related to the synthesis of Cyclotron to 17.47 mSv work showed the highest radiation dose, Gamma camera Cinema Room 7.24 mSv, PET/CT Cinema Room service is 7.60 mSv, 2.04 mSv in order of intervention high, were analyzed. Working period, according to domain-specific average annual dose of radiation dose from 10 to 14 in oral and maxillofacial radiology practitioners as high as 1.01~3.00 mSv average dose showed the Department of Radiology, 1-4 years, 5-9 years, respectively, 1.01 workers~8.00 mSv in the range of the most high-dose region showed the distribution, nuclear medicine, and the 1-4 years, 5-9 years 3.01~19.05 mSv, respectively, workers of the highest dose showed the distribution of the area in the range of 10 to 14 years, Workers at 15-19 3.01~15.00 mSv, respectively in the range of the high-dose region were distributed. Conclusion: These results suggest that medical radiation workers working in Nuclear Medicine radiation safety management of the majority of the current were carried out in the effectiveness, depending on job characteristics has been found that many differences. However, this requires efforts to minimize radiation exposure, and systematic training for them and for reasonable radiation exposure management system is needed.

  • PDF

Context Sharing Framework Based on Time Dependent Metadata for Social News Service (소셜 뉴스를 위한 시간 종속적인 메타데이터 기반의 컨텍스트 공유 프레임워크)

  • Ga, Myung-Hyun;Oh, Kyeong-Jin;Hong, Myung-Duk;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.4
    • /
    • pp.39-53
    • /
    • 2013
  • The emergence of the internet technology and SNS has increased the information flow and has changed the way people to communicate from one-way to two-way communication. Users not only consume and share the information, they also can create and share it among their friends across the social network service. It also changes the Social Media behavior to become one of the most important communication tools which also includes Social TV. Social TV is a form which people can watch a TV program and at the same share any information or its content with friends through Social media. Social News is getting popular and also known as a Participatory Social Media. It creates influences on user interest through Internet to represent society issues and creates news credibility based on user's reputation. However, the conventional platforms in news services only focus on the news recommendation domain. Recent development in SNS has changed this landscape to allow user to share and disseminate the news. Conventional platform does not provide any special way for news to be share. Currently, Social News Service only allows user to access the entire news. Nonetheless, they cannot access partial of the contents which related to users interest. For example user only have interested to a partial of the news and share the content, it is still hard for them to do so. In worst cases users might understand the news in different context. To solve this, Social News Service must provide a method to provide additional information. For example, Yovisto known as an academic video searching service provided time dependent metadata from the video. User can search and watch partial of video content according to time dependent metadata. They also can share content with a friend in social media. Yovisto applies a method to divide or synchronize a video based whenever the slides presentation is changed to another page. However, we are not able to employs this method on news video since the news video is not incorporating with any power point slides presentation. Segmentation method is required to separate the news video and to creating time dependent metadata. In this work, In this paper, a time dependent metadata-based framework is proposed to segment news contents and to provide time dependent metadata so that user can use context information to communicate with their friends. The transcript of the news is divided by using the proposed story segmentation method. We provide a tag to represent the entire content of the news. And provide the sub tag to indicate the segmented news which includes the starting time of the news. The time dependent metadata helps user to track the news information. It also allows them to leave a comment on each segment of the news. User also may share the news based on time metadata as segmented news or as a whole. Therefore, it helps the user to understand the shared news. To demonstrate the performance, we evaluate the story segmentation accuracy and also the tag generation. For this purpose, we measured accuracy of the story segmentation through semantic similarity and compared to the benchmark algorithm. Experimental results show that the proposed method outperforms benchmark algorithms in terms of the accuracy of story segmentation. It is important to note that sub tag accuracy is the most important as a part of the proposed framework to share the specific news context with others. To extract a more accurate sub tags, we have created stop word list that is not related to the content of the news such as name of the anchor or reporter. And we applied to framework. We have analyzed the accuracy of tags and sub tags which represent the context of news. From the analysis, it seems that proposed framework is helpful to users for sharing their opinions with context information in Social media and Social news.