• Title/Summary/Keyword: document indexing method

Search Result 46, Processing Time 0.034 seconds

An XML Tag Indexing Method Using on Lexical Similarity (XML 태그를 분류에 따른 가중치 결정)

  • Jeong, Hye-Jin;Kim, Yong-Sung
    • The KIPS Transactions:PartB
    • /
    • v.16B no.1
    • /
    • pp.71-78
    • /
    • 2009
  • For more effective index extraction and index weight determination, studies of extracting indices are carried out by using document content as well as structure. However, most of studies are concentrating in calculating the importance of context rather than that of XML tag. These conventional studies determine its importance from the aspect of common sense rather than verifying that through an objective experiment. This paper, for the automatic indexing by using the tag information of XML document that has taken its place as the standard for web document management, classifies major tags of constructing a paper according to its importance and calculates the term weight extracted from the tag of low weight. By using the weight obtained, this paper proposes a method of calculating the final weight while updating the term weight extracted from the tag of high weight. In order to determine more objective weight, this paper tests the tag that user considers as important and reflects it in calculating the weight by classifying its importance according to the result. Then by comparing with the search performance while using the index weight calculated by applying a method of determining existing tag importance, it verifies effectiveness of the index weight calculated by applying the method proposed in this paper.

An Indexing Model for Efficient Structure Retrieval of XML Documents (XML 문서의 효율적인 구조 검색을 위한 색인 모델)

  • Park, Jong-Gwan;Son, Chung-Beom;Gang, Hyeong-Il;Yu, Jae-Su;Lee, Byeong-Yeop
    • The KIPS Transactions:PartD
    • /
    • v.8D no.5
    • /
    • pp.451-460
    • /
    • 2001
  • In this paper, we propose an indexing model for efficient structure retrieval of XML documents. The proposed indexing model consists of structured information that supports a wide range of queries such as content-based queries and structure-attribute queries at all levels of the document hierarchy and index organizations that are constructed based on the information. To support structured retrieval, a new representation method for structured information is presented. Using this structured information, we design content index, structure index, and attribute index for efficient retrieval. also, we explain processing procedures for mixed queries and evaluate the performance of proposed indexing model. It is shown that the proposed indexing model achieves better retrieval performance than the existing method.

  • PDF

A Tree-Based Indexing Method for Mobile Data Broadcasting (모바일 데이터 브로드캐스팅을 위한 트리 기반의 인덱싱 방법)

  • Park, Mee-Hwa;Lee, Yong-Kyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.4
    • /
    • pp.141-150
    • /
    • 2008
  • In this mobile computing environment, data broadcasting is widely used to resolve the problem of limited power and bandwidth of mobile equipments. Most previous broadcast indexing methods concentrate on flat data. However. with the growing popularity of XML, an increasing amount of information is being stored and exchanged in the XML format. We propose a novel indexing method. called TOP tree(Tree Ordering based Path summary tree), for indexing XML document on mobile broadcast environments. TOP tree is a path summary tree which provides a concise structure summary at group level using global IDs and element information at local level using local IDs. Based on the TOP tree representation, we suggest a broadcast stream generation and query Processing method that efficiently handles not only simple Path queries but also multiple path queries. We have compared our indexing method with other indexing methods. Evaluation results show that our approaches can effectively improve the access time and tune-in time in a wireless broadcasting environment.

  • PDF

XML Structured Model of Tree-type for Efficient Retrieval (효율적인 검색을 위한 Tree 형태의 XML 문서 구조 모델)

  • Kim Young-Ran
    • Journal of the Korea Society of Computer and Information
    • /
    • v.9 no.4 s.32
    • /
    • pp.27-32
    • /
    • 2004
  • A XML Document has a structure which may be irregular The irregular document structure is difficult for users to know exactly. In this paper, we propose the XML document model and the structure retrieval method for efficient management and structure retrieval of XML documents. So we use fixed-sized LETID having the information of element, describe the structured information retrieval algorithm for parent and child element to represent the structured information of XML documents. Using this method, we represent the structured information of XML document efficiently. We can directly access to specific clement by simple operation, and process various queries. We expect the method to support various structured retrieval of specific element such as parent, child. and sibling elements.

  • PDF

A Study on Semantic Based Indexing and Fuzzy Relevance Model (의미기반 인덱스 추출과 퍼지검색 모델에 관한 연구)

  • Kang, Bo-Yeong;Kim, Dae-Won;Gu, Sang-Ok;Lee, Sang-Jo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04b
    • /
    • pp.238-240
    • /
    • 2002
  • If there is an Information Retrieval system which comprehends the semantic content of documents and knows the preference of users. the system can search the information better on the Internet, or improve the IR performance. Therefore we propose the IR model which combines semantic based indexing and fuzzy relevance model. In addition to the statistical approach, we chose the semantic approach in indexing, lexical chains, because we assume it would improve the performance of the index term extraction. Furthermore, we combined the semantic based indexing with the fuzzy model, which finds out the exact relevance of the user preference and index terms. The proposed system works as follows: First, the presented system indexes documents by the efficient index term extraction method using lexical chains. And then, if a user tends to retrieve the information from the indexed document collection, the extended IR model calculates and ranks the relevance of user query. user preference and index terms by some metrics. When we experimented each module, semantic based indexing and extended fuzzy model. it gave noticeable results. The combination of these modules is expected to improve the information retrieval performance.

  • PDF

An Efficient Method for Detecting Duplicated Documents in a Blog Service System (블로그 서비스 시스템을 위한 효과적인 중복문서의 검출 기법)

  • Lee, Sang-Chul;Lee, Soon-Haeng;Kim, Sang-Wook
    • Journal of KIISE:Databases
    • /
    • v.37 no.1
    • /
    • pp.50-55
    • /
    • 2010
  • Duplicate documents in blog service system are one of causes that deteriorate both of the quality and the performance of blog searches. Unlike the WWW environment, the creation of documents is reported every time in blog service system, which makes it possible to identify the original document from its duplicate documents. Based on this observation, this paper proposes a novel method for detecting duplication documents in blog service system. This method determines whether a document is original or not at the time it is stored in the blog service system. As a result, it solves the problem of duplicate documents retrieved in the search result by keeping those documents from being stored in the index for the blog search engine. This paper also proposes three indexing methods that preserve an accuracy of previous work, Min-hashing. We show most effective indexing method via extensive experiments using real-life blog data.

An Index System using Restrictive Distance (거리 제한을 이용한 색인 시스템)

  • Park, Chan-Ee;Kim, Sang-Bok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.1 s.39
    • /
    • pp.273-282
    • /
    • 2006
  • In this paper, we propose index method introducing distance concept in word by a method weighting word. This index method is frequent representing an inquiry word and document index and compound noun or more than two adjoin nouns or noun phrase, the farther the distance between these nouns, the fewer selected ratio decreases in index point is the aiming, this choose guide word candidate by existent weight grant method and distance between candidates chose candidate finally in index within 3 sentences. Using in these way I document of 100 kinds of newspaper, scientific treatise, web document and so on, showed the correctness rate resulted of newspaper 92.03% scientific treatise 95% web document 73.33%.

  • PDF

An Experimental Study on Fuzzy Document Retrieval System (퍼지개념을 적용한 질의식의 분석과 문헌정보 검색에 관한 연구)

  • Lee Seung Chai
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.21
    • /
    • pp.249-290
    • /
    • 1991
  • Theoretical developments in the information retrieval have offered a number of alternatives to traditional Boolean retrieval. Probability theory and fuzzy set theory have played prominent roles here. Fuzzy set theory is an attempt to generalize traditional set theory by permitting partial membership in a set and this means recognizing different degrees to which a document can match a request. In this study, an experimentation of a document retrieval system using the fuzzy relation matrix of the keywords is described and the results are offered. The queries composed of keywords and Boolean operaters AND, OR, NOT were processed in the retrieval method, and the method was implemented on the PC of 32bit level (30 MHz) in an experimental system. The measurement of the recall ratio and precision ratio verified the effectiveness of the proposed fuzzy relation matrix of keywords and retrieval method. Compared to traditional crisp method in the same document database, the recall ratio increased $10\%$ high although the precision ratio decreased slightly. The problems, in this experiment, to be resolved are first, the design of the automatic data input and fuzzy indexing modules, through which the system . can have the ability of competition and usefulness. Second, devising a systematic procedure for assigning fuzzy weights to keywords in documents and in queries.

  • PDF

Retrieval Model using Subject Classification Table, User Profile, and LSI (전공분류표, 사용자 프로파일, LSI를 이용한 검색 모델)

  • Woo Seon-Mi
    • The KIPS Transactions:PartD
    • /
    • v.12D no.5 s.101
    • /
    • pp.789-796
    • /
    • 2005
  • Because existing information retrieval systems, in particular library retrieval systems, use 'exact keyword matching' with user's query, they present user with massive results including irrelevant information. So, a user spends extra effort and time to get the relevant information from the results. Thus, this paper will propose SULRM a Retrieval Model using Subject Classification Table, User profile, and LSI(Latent Semantic Indexing), to provide more relevant results. SULRM uses document filtering technique for classified data and document ranking technique for non-classified data in the results of keyword-based retrieval. Filtering technique uses Subject Classification Table, and ranking technique uses user profile and LSI. And, we have performed experiments on the performance of filtering technique, user profile updating method, and document ranking technique using the results of information retrieval system of our university' digital library system. In case that many documents are retrieved proposed techniques are able to provide user with filtered data and ranked data according to user's subject and preference.

Measurement of Document Similarity using Term/Term-pair Features and Neural Network (단어/단어쌍 특징과 신경망을 이용한 두 문서간 유사도 측정)

  • Kim Hye Sook;Park Sang Cheol;Kim Soo Hyung
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.12
    • /
    • pp.1660-1671
    • /
    • 2004
  • This paper proposes a method for measuring document similarity between two documents. One of the most significant ideas of the method is to estimate the degree of similarity between two documents based on the frequencies of terms and term-pair, existing in both the two documents. In contrast to conventional methods which takes only one feature into account, the proposed method considers several features at the same time and meatures the similarity using a neural network. To prove the superiority of our method, two experiments have been conducted. One is to verify whether the two input documents are from the same document or not. The other is a problem of information retrieval with a document as the query against a large number of documents. In both the two experiments, the proposed method shows higher accuracy than two conventional methods, Cosine similarity measurement and a term-pair method.