• Title/Summary/Keyword: docking formation

Search Result 29, Processing Time 0.027 seconds

Molecular Docking Analysis of Protein Phosphatase 1D (PPM1D) Receptor with SL-175, SL-176 and CDC5L

  • Madhavan, Thirumurthy
    • Journal of Integrative Natural Science
    • /
    • v.11 no.1
    • /
    • pp.25-29
    • /
    • 2018
  • Protein phosphatase manganese dependent 1D (PPM1D), a Ser/Thr protein phosphatise, play major role in the cancer tumorigenesis of various tumors including neuroblastoma, pancreatic adenocarcinoma, medulloblastoma, breast cancer, prostate cancer and ovarian cancer. Hence, analysis on the structural features required for the formation of PPM1D-inhibitor complex becomes essential. In this study, we have performed molecular docking of SL-175 and -176 and protein-protein docking of CDC5L with PPM1D. On analysing the docked complexes, we have identified the important residues involved in the formation of protein-ligand complex. Research concentrating on these residues could be helpful in understanding the pathophysiology of various tumors related to PPM1D.

Autonomous Parking of Car-Like Mobile Robot Using Docking Formation (도킹 포메이션을 이용한 차량형 이동 로봇의 자율 주차)

  • Kwon, Ji-Wook;Kim, Jin Hyo;Seo, Jiwon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.10
    • /
    • pp.180-189
    • /
    • 2014
  • For a autonomous parking of unmanned car, this paper proposes a posture regulation algorithm of a car-like mobile robot, which is supported by a docking formation and a feedback linearization control law. Unlike the previous researches based on a path-planning and optimization algorithms, the autonomous car implemented the proposed autonomous parking algorithm can be parked without much computational burden and a high performance processor. Stability of the proposed docking formation and feedback linearization control law are analyzed and performance of the proposed algorithm is shown by implementing to the simulations with six scenarios and an actual car in the experiment place.

Multilevel Precision-Based Rational Design of Chemical Inhibitors Targeting the Hydrophobic Cleft of Toxoplasma gondii Apical Membrane Antigen 1 (AMA1)

  • Vetrivel, Umashankar;Muralikumar, Shalini;Mahalakshmi, B;K, Lily Therese;HN, Madhavan;Alameen, Mohamed;Thirumudi, Indhuja
    • Genomics & Informatics
    • /
    • v.14 no.2
    • /
    • pp.53-61
    • /
    • 2016
  • Toxoplasma gondii is an intracellular Apicomplexan parasite and a causative agent of toxoplasmosis in human. It causes encephalitis, uveitis, chorioretinitis, and congenital infection. T. gondii invades the host cell by forming a moving junction (MJ) complex. This complex formation is initiated by intermolecular interactions between the two secretory parasitic proteins-namely, apical membrane antigen 1 (AMA1) and rhoptry neck protein 2 (RON2) and is critically essential for the host invasion process. By this study, we propose two potential leads, NSC95522 and NSC179676 that can efficiently target the AMA1 hydrophobic cleft, which is a hotspot for targeting MJ complex formation. The proposed leads are the result of an exhaustive conformational search-based virtual screen with multilevel precision scoring of the docking affinities. These two compounds surpassed all the precision levels of docking and also the stringent post docking and cumulative molecular dynamics evaluations. Moreover, the backbone flexibility of hotspot residues in the hydrophobic cleft, which has been previously reported to be essential for accommodative binding of RON2 to AMA1, was also highly perturbed by these compounds. Furthermore, binding free energy calculations of these two compounds also revealed a significant affinity to AMA1. Machine learning approaches also predicted these two compounds to possess more relevant activities. Hence, these two leads, NSC95522 and NSC179676, may prove to be potential inhibitors targeting AMA1-RON2 complex formation towards combating toxoplasmosis.

In-vitro Antimalarial Investigations and Molecular Docking Studies of Compounds from Trema orientalis L. (blume) Leaf Extract

  • Samuel, Babatunde Bolorunduro;Oluyemi, Wande Michael;Okedigba, Ayoyinka Oluwaseun
    • Natural Product Sciences
    • /
    • v.28 no.2
    • /
    • pp.45-52
    • /
    • 2022
  • The identification of Plasmodium falciparum enoyl acyl-carrier protein reductase (pfENR) is considered as a potential biological target against malaria. Trema orientalis is considered a rich source of phytochemicals useful in malaria treatment. This study evaluated the in-vitro inhibitory activity of the extract and isolated compounds of T. orientalis leaf; the isolated compounds and the analogues of the most active compound were subjected to in-silico molecular docking studies on pfENR. The methanolic extract of T. orientalis was subjected to repeated chromatographic separation which led to the isolation of some compounds. The isolated compounds from the plant were examined for their antimalarial activity using β-hematin inhibition assay. Virtual screening via molecular docking and ADMET studies were conducted to gain insight into the mechanism of binding of ligand and to identify effective pfENR inhibitors. The isolated compounds and the analogues of the most active isolates were gotten from PubChem library for use in docking study. Hexacosanol and β-sitosterol showed inhibition of the β-hematin formation. The docking results showed that hexacosanol, β-sitosterol and the analogues of β-sitosterol displayed binding energy ranging between -6.1 kcal/mol and -11.6 kcal/mol. Sitosterol glucoside has the highest docking score. Some of the ligands showed more binding affinity than known bioactive compounds used as reference. Analogues of β-sitosterol has been shown to be potential inhibitors of pfENR, therefore, the findings from this study suggest that sitosterol glucoside and ergosterol peroxide could act as antimalarial agents after further lead optimisation investigations.

Docking Study of Corticotropin-Releasing Factor-1 Receptor with Its Antagonists

  • Babu, Sathya
    • Journal of Integrative Natural Science
    • /
    • v.11 no.1
    • /
    • pp.19-24
    • /
    • 2018
  • CRFR is involved in the pathophysiology of various disorders including depression, stress, anxiety, post-traumatic stress disorder, and addiction. The discovery of novel and structurally diverse CRF1 receptor inhibitors becomes essential. In this study, we have performed molecular docking of CRF1R with the derivatives of 8-substituted-2-aryl-5-alkylaminoquinolines as CRF1R inhibitors. The antagonist molecules were optimized and docked into the binding site of the receptor. On analysing the docked complexes we have identified that the residues HIS214, THR215, ARG227, ARG1008, LYS1060 and ASP1061 are important in forming hydrogen bond with the inhibitors. Further studies on these residues could reveal important structural features required for the formation of CRF1R-inhibitor complex and thus in the discovery of novel and potent inhibitors.

Computational Analysis of Human Chemokine Receptor Type 6

  • Sridharan, Sindhiya;Saifullah, Ayesha Zainab;Nagarajan, Santhosh Kumar;Madhavan, Thirumurthy
    • Journal of Integrative Natural Science
    • /
    • v.11 no.2
    • /
    • pp.121-129
    • /
    • 2018
  • CXCR6 is a major target in drug design as it is a determinant receptor in many diseases like AIDS, Type I Diabetes, some cancer types, atherosclerosis, tumor formation, liver disease and steatohepatitis. In this study, we propose the active site residues of CXCR6 molecule. We employed homology modelling and molecular docking approach to generate the 3D structure for CXCR6 and to explore its interaction between the antagonists and agonists. 3D models were generated using 14 different templates having high sequence identity with CXCR6. Surflex docking studies using pyridine and pyrimidine derivatives enabled the analysis of the binding site and finding of the important residues involved in binding. 3D structure of CXCL16, a natural ligand for CXCR6, was modelled using PHYRE and protein - protein docking was performed using ClusPro. The residues which were found to be crucial in interaction with the ligand are THR110, PHE113, TYR114, GLN160, GLN195, CYS251 and SER255. This study can be used as a guide for therapeutic studies of human CXCR6.

Molecular Modeling and Site Directed Mutagenesis of the O-Methyltransferase, SOMT-9 Reveal Amino Acids Important for Its Reaction and Regioselectivity

  • Park, So-Hyun;Kim, Bong-Gyu;Lee, Sun-Hee;Lim, Yoong-Ho;Cheong, You-Hoon;Ahn, Joong-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2248-2252
    • /
    • 2007
  • SOMT-9 is an O-methyltransferase that utilizes quercetin to produce 3'-methoxy quercetin. In order to determine which amino acids of SOMT-9 are important for this reaction and its regioselectivity, molecular docking experiments followed by site directed mutagenesis were performed. Molecular modeling and molecular docking experiments identified several amino acid residues involved in metal binding, AdoMet binding, and substrate binding. Site-directed mutagenesis showed that Asp188 is critical for metal binding and that Lys165 assists other metal binding residues in maintaining quercetin in the proper position during the reaction. In addition, Tyr207 was shown to play an important role in the determination of the regioselectivity and Met60 was shown to be involved in formation of the hydrophobic pocket necessary for substrate binding. The molecular modeling and docking experiments discussed in this study could be applicable to future research including prediction of substrate binding and regioselectivity of an enzyme.

Antibiofilm and Anti-β-Lactamase Activities of Burdock Root Extract and Chlorogenic Acid against Klebsiella pneumoniae

  • Rajasekharan, Satish Kumar;Ramesh, Samiraj;Satish, Ann Susan;Lee, Jintae
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.3
    • /
    • pp.542-551
    • /
    • 2017
  • Small phytochemicals have been successfully adopted as antibacterial chemotherapies and are being increasingly viewed as potential antibiofilm agents. Some of these molecules are known to repress biofilm and toxin production by certain bacterial and yeast pathogens, but information is lacking with regard to the genes allied with biofilm formation. The present study was performed to investigate the inhibitory effect of burdock root extract (BRE) and of chlorogenic acid (CGA; a component of BRE) on clinical isolates of Klebsiella pneumoniae. BRE and CGA exhibited significant antibiofilm activity against K. pneumoniae without inflicting any harm to its planktonic counterparts. In vitro assays supported the ${\beta}$-lactamase inhibitory effect of CGA and BRE while in silico docking showed that CGA bound strongly with the active sites of sulfhydryl-variable-1 ${\beta}$-lactamase. Furthermore, the mRNA transcript levels of two biofilm-associated genes (type 3 fimbriae mrkD and trehalose-6-phosphate hydrolase treC) were significantly downregulated in CGA- and BRE-treated samples. In addition, CGA inhibited biofilm formation by Escherichia coli and Candida albicans without affecting their planktonic cell growth. These findings show that BRE and its component CGA have potential use in antibiofilm strategies against persistent K. pneumoniae infections.

Structural investigation of ginsenoside Rf with PPARγ major transcriptional factor of adipogenesis and its impact on adipocyte

  • Siraj, Fayeza Md;Natarajan, Sathishkumar;Huq, Md Amdadul;Kim, Yeon Ju;Yang, Deok Chun
    • Journal of Ginseng Research
    • /
    • v.39 no.2
    • /
    • pp.141-147
    • /
    • 2015
  • Background: Adipocytes, which are the main cellular component of adipose tissue, are the building blocks of obesity. The nuclear hormone receptor $PPAR{\gamma}$ is a major regulator of adipocyte differentiation and development. Obesity, which is one of the most dangerous yet silent diseases of all time, is fast becoming a critical area of research focus. Methods: In this study, we initially aimed to investigate whether the ginsenoside Rf, a compound that is only present in Panax ginseng Meyer, interacts with $PPAR{\gamma}$ by molecular docking simulations. After we performed the docking simulation the result has been analyzed with several different software programs, including Discovery Studio, Pymol, Chimera, Ligplus, and Pose View. All of the programs identified the same mechanism of interaction between $PPAR{\gamma}$ and Rf, at the same active site. To determine the drug-like and biological activities of Rf, we calculate its absorption, distribution, metabolism, excretion, and toxic (ADMET) and prediction of activity spectra for substances (PASS) properties. Considering the results obtained from the computational investigations, the focus was on the in vitro experiments. Results: Because the docking simulations predicted the formation of structural bonds between Rf and $PPAR{\gamma}$, we also investigated whether any evidence for these bonds could be observed at the cellular level. These experiments revealed that Rf treatment of 3T3-L1 adipocytes downregulated the expression levels of $PPAR{\gamma}$ and perilipin, and also decreased the amount of lipid accumulated at different doses. Conclusion: The ginsenoside Rf appears to be promising compound that could prove useful in antiobesity treatments.

Protein-Protein Interaction Analysis of Corticotropin - Releasing Hormone Receptor 1 with Corticotropin-Releasing Hormone and Sauvagine

  • Nagarajan, Santhosh Kumar
    • Journal of Integrative Natural Science
    • /
    • v.11 no.2
    • /
    • pp.101-106
    • /
    • 2018
  • Corticotropin - releasing hormone receptor 1 (CRHR1) forms an integral part of the pathophysiology of disorders like post-traumatic stress disorder, stress, anxiety, addiction, and depression. Hence it is essential to look for new, potent and structure-specific inhibitors of CRHR1. We have analysed the protein-protein interaction complexes of the CRHR1 receptor with its native ligand CRF and full agonist Sauvagine. The structure of Sauvagine was predicted using homology modelling. We have identified that the residues TYR253, ASP254, GLU256, GLY265, ARG1014 and LY1060 are important in the formation of protein-protein complex formation. Future studies on these residues could throw light on the crucial structural features required for the formation of CRHR1-inhibitor complex and in studies that try to solve the structural complexities of CRHR1.