• Title/Summary/Keyword: dnaG

Search Result 3,002, Processing Time 0.028 seconds

Non-invasive Biological Monitoring of DNA Adducts Formed at Workers Handling 3,3-Dichlorobenzidine(DCB) by Using GC/MS

  • Lee, Jin-Heon
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.4
    • /
    • pp.21-26
    • /
    • 2003
  • We examine the metabolites(DCB and acetyl DCB) extracted from exfoliated urothelial cells of 33 workers who employed DCB-handling industries. The characteristics of workers submitted urine, whose age, working years and smoking persons were 41.9$\pm$11.1, 8.7$\pm$5.5 and 25(32.0%), respectively. DNA adduct was isolated from the exfoliated urothelial cells by applying $^{32}$ p-postlabeling procedure. Metabolites(DCB and acetyl DCB) were extracted from DNA adducts by hydrolyzing and N-glycosylase. Concentrations of DCB and acetyl DCB were 28.6$\pm$5.25 ng/g DNA, and 17.0$\pm$3.73 ng/g DNA, respectively. The regression between DCB level and exposure years of workers is y = 1.668 + 2.588x(p = 0.005, $r^2$= 0.394). The regression between acetyl DCB level and exposure years of workers is y = 8.071 + 1.325x(p = 0.076, $r^2$= 0.222). Smoking workers are significantly higher than non-smoking workers on DCB and acetyl DCB level(p = 0.065 and 0.021, respectively). DCB level was 33.9$\pm$7.14 ng/g DNA on smokers, and 23.1$\pm$9.97 ng/g DNA on non-smokers. Acetyl DCB was 25.1$\pm$5.27 ng/g DNA on smokers, and 8.92$\pm$7.22 ng/g DNA on non-smokers.

Photodamage to Double-stranded DNA by Xanthone Analogues Increases Exponentially with Their HOMO Energies

  • Hirakawa, Kazutaka;Yoshida, Mami;Oikawa, Shinji;Kawanishi, Shosuke
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.488-490
    • /
    • 2002
  • DNA photodamage mediated by photosensitizers are believed to play an important role in solar UVA carcinogenesis. We investigated the relationship between the DNA-damaging abilities of photoexcited xanthone analogues (as photosensitizers) and their highest occupied molecular orbital (HOMO) energies. DNA damage was examined using /sup 32/P-labeled DNA fragments obtained from the p53 tumor suppressor gene. These compounds induced DNA photodamage in a similar manner, and the extents of DNA damage were following order: xanthone> thioxanthone > acridone. Photoexcited xanthone caused nucleobase oxidation specifically at 5'-G of GG sequence in double-stranded DNA. An oxidative product of 2'-deoxyguanosine, 8-hydroxy-2'-deoxyguanosine (8-OHdG), was detected, and the amount was decreased by DNA denaturation. These findings suggest that photoexcited xanthone generates 8-OHdG at 5'-G of GG in double-stranded DNA through electron transfer. The calculated HOMO energies of these photosensitizers decreased in the following order: xanthone> thioxanthone > acridone. This study has demonstrated that DNA-damaging abilities of these photosensitizers increased exponentially with an increase in their HOMO energies.

  • PDF

ROLE OF NF${\kappa}B$ IN TOLL-LIKE RECEPTOR 9-MEDIATED MATRIX METALLOPROTEINASE-9 EXPRESSION (Toll-like receptor 9-매개에 의한 matrix metalloproteinase-9 발현에서 NF${\kappa}B$의 역할)

  • Lee, Sang-Hoon;Chin, Byung-Rho;Baek, Suk-Hwan
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.33 no.6
    • /
    • pp.636-642
    • /
    • 2007
  • Background: CpG DNA plays an important role in immune cell function. This study examined whether the temporal control of toll-like receptor (TLR)9 by CpG DNA can regulate the expression of matrix metalloproteinase-9(MMP-9). Methods and materials: Macrophages were cultured in the presence of 10% FBS. For the various MMP genes analysis, RT-PCR and real-time PCR were performed. In addition, zymography assay performed for the MMP activity. The phosphorylation assay did for the ERK1/2 and NF${\kappa}B$ activation, and luciferase promoter assay was for the NF${\kappa}B$ activity. Results: CpG DNA induced the mRNA expression of MMP-2, MMP-9, and MMP-13, but not of MMP-7, MMP-8, and MMP-12, in a time-dependent manner. Especially, the mRNA expression of MMP-9 was strongly induced by CpG DNA using real-time RT-PCR. The TLR9 inhibitor, chloroquine, suppressed CpG DNA-induced MMP-9 expression and its activity. Moreover, CpG DNA induced the phosphorylation of ERK and the inhibition of ERK by U0126 suppressed CpG DNA-induced MMP-9 expression and its activity. CpG DNA stimulated $I{\kappa}B-{\alpha}$ degradation and luciferase activity. In addition, pretreatment of SN-50, the inhibitor of NF${\kappa}B$, strongly blocked the CpG DNA-induced MMP-9 expression and activity. Conclusion: These observations suggest that CpG DNA may play important roles in the activation of macrophages by regulating the production of MMP-9 via the sequential TLR9-ERK-NF${\kappa}B$ signaling pathway.

Activation of Toll-like receptor 9 and production of epitope specific antibody by liposome-encapsulated CpG-DNA

  • Kim, Dong-Bum;Kwon, Hyung-Joo;Lee, Young-Hee
    • BMB Reports
    • /
    • v.44 no.9
    • /
    • pp.607-612
    • /
    • 2011
  • Several investigators have shown that CpG-DNA has outstanding effects as a Th1-responsive adjuvant and that its potent adjuvant effects are enhanced by encapsulation with a liposome of proper composition. In this study, we showed that encapsulation with phosphatidyl-${\beta}$-oleoyl-${\gamma}$-palmitoyl ethanolamine (DOPE): cholesterol hemisuccinate (CHEMS) complex enhances the immunostimulatory activity of CpG DNA and the binding of CpG-DNA to TLR9. We also examined involvement of myeloid differentiation protein (MyD88) and NF-${\kappa}B$ activation in liposome-encapsulated CpG-DNA-induced IL-8 promoter activation. In this manuscript, the natural phosphodiester bond CpG-DNA encapsulated by DOPE : CHEMS complex is designated as Lipoplex(O). Importantly, we successfully screened B cell epitopes of envelope protein (E protein) of hepatitis C virus (HCV-E) and attachment glycoprotein G of human respiratory syncytial virus (HRSV-G) by immunization with complexes of several peptides and Lipoplex(O) without carriers. Therefore, Lipoplex(O) is potentially applicable as a universal adjuvant for peptide-based epitope screening and antibody production.

Inhibitory Effect of Genomic DNA Extracted from Pediococcus acidilactici on Porphyromonas gingivalis Lipopolysaccharide-Induced Inflammatory Responses

  • Young Hyeon Choi;Bong Sun Kim;Seok-Seong Kang
    • Food Science of Animal Resources
    • /
    • v.43 no.1
    • /
    • pp.101-112
    • /
    • 2023
  • This study aimed to assess whether genomic DNA (gDNA) extracted from Pediococcus acidilactici inhibits Porphyromonas gingivalis lipopolysaccharide (LPS)-induced inflammatory responses in RAW 264.7 cells. Pretreatment with gDNA of P. acidilactici K10 or P. acidilactici HW01 for 15 h effectively inhibited P. gingivalis LPS-induced mRNA expression of interleukin (IL)-1β, IL-6, and monocyte chemoattractant protein (MCP)-1. Although both gDNAs did not dose-dependently inhibit P. gingivalis LPS-induced mRNA expression of IL-6 and MCP-1, they inhibited IL-1β mRNA expression in a dose-dependent manner. Moreover, pretreatment with both gDNAs inhibited the secretion of IL-1β, IL-6, and MCP-1. When RAW 264.7 cells were stimulated with P. gingivalis LPS alone, the phosphorylation of mitogen-activated protein kinases (MAPKs) was increased. However, the phosphorylation of MAPKs was reduced in the presence of gDNAs. Furthermore, both gDNAs restored IκBα degradation induced by P. gingivalis LPS, indicating that both gDNAs suppressed the activation of nuclear factor-κB (NF-κB). In summary, P. acidilactici gDNA could inhibit P. gingivalis LPS-induced inflammatory responses through the suppression of MAPKs and NF-κB, suggesting that P. acidilactici gDNA could be effective in preventing periodontitis.

Production of Soluble Human Granulocyte Colony Stimulating Factor in E. coli by Molecular Chaperones

  • PARK SO-LIM;SHIN EUN-JUNG;HONG SEUNG-PYO;JEON SUNG-JONG;NAM SOO-WAN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1267-1272
    • /
    • 2005
  • The effects of coexpression of GroEL/ES and DnaK/DnaJ/GrpE chaperones on the productivity of the soluble form of human granulocyte colony stimulating factor (hG-CSF) in E. coli were examined. Recombinant hG-CSF protein was coexpressed with DnaK/DnaJ/GrpE or GroEL/ES chaperones under the control of the araB or Pzt-1 promoter, respectively. The optimal concentration of L-arabinose for the expression of DnaK/DnaJ/GrpE was found to be 1 mg/ml. When L-arabinose was added at $OD_{600}$=0.2 (early-exponential phase), soluble hG-CSF production was greatly increased. In addition, it was observed that the DnaK/DnaJ/GrpE and GroEL/ES chaperones had no synergistic effects on preventing aggregation of hG-CSF protein. Consequently, by coexpression of the DnaK/DnaJ/GrpE chaperone, the signal intensity of the hG-CSF protein band in the soluble fraction of cell lysate was increased from $3.5\%\;to\;13.9\%$, and Western blot analysis also revealed about a 4-5-fold increase of production of soluble hG-CSF over the non-induction case of DnaK/DnaJ/GrpE.

The production and immunostimulatory activity of double-stranded CpG-DNA

  • Park, Byoung-Kwon;Kim, Dong-Bum;Rhee, Jae-Won;Kim, Min-Soo;Seok, Hyun-Jeong;Choi, Soo-Young;Park, Jin-Seu;Lee, Young-Hee;Kwon, Hyung-Joo
    • BMB Reports
    • /
    • v.43 no.3
    • /
    • pp.164-169
    • /
    • 2010
  • CpG-DNA, which contains unmethylated CpG dinucleotides in the context of specific sequences, has remarkable and diverse immunological effects, including induction of proinflammatory cytokine expression and regulation of the Th1/Th2 immune response. Here, we examined the immunostimulatory activities of double-stranded (ds) CpG-DNA in the human B cell line RPMI8226. To investigate whether dsCpG-DNA stimulates immune cells, we constructed a plasmid containing repeated dsCpG-DNA and produced dsCpG-DNA by PCR amplification and EcoR I digestion. PCR-amplified dsCpG-DNA alone did not have immmunostimulatory activity. However, dsCpGDNA encapsulated with lipofectin induced IL-8 promoter activation, HLA-DRA expression, and IL-8 expression in a CG sequence-independent manner. The effects of encapsulated dsCpGDNA were independent of minor endotoxin contamination. These findings suggest the potential use of dsCpG-DNA as a therapy for immune response regulation.

Suppressive Effect of Galangin on the Formation of 8-OH2'dG and DNA Single Strand Breaks by Hydrogen Peroxide ($H_2O_2$ 유도 8-OH2'dG 생성 및 DNA Single Strand Break에 미치는 Galangin의 억제효과)

  • Kim, Soo-Hee;Heo, Moon-Young
    • YAKHAK HOEJI
    • /
    • v.54 no.1
    • /
    • pp.32-38
    • /
    • 2010
  • The aim of this study was to evaluate the effect of galangin towards hydrogen peroxide-induced DNA damage. The calf thymus DNA and Chinese Hamster Lung (CHL) cells were used to measure 8-hydroxy-2'-deoxyguanosine(8-OH2'dG) as an indicator of DNA oxidative damage using high performance liquid chromatography with electrochemical detection. Hydrogen peroxide in the presence of Fe(II) ion induced the formation of 8-OH2'dG in both calf thymus DNA and CHL cells. The DNA damage effects were enhanced by increasing the concentration of Fe(II) ion and inhibited by galangin. In the single cell gel electrophoresis (Comet assay), galangin and dl-a-tocopherol showed an inhibitory effect in CHL on hydrogen peroxide induced DNA single strand breaks. Galangin showed more potent activity than dl-$\alpha$-tocopherol under our experimental conditions. These results indicate that galangin can modify the action mechanisms of the oxidative DNA damage and may act as chemopreventive agents against oxidative stress.

Comparison of the Efficiency from Raw and Processed Corns by Five Different DNA Extraction Methods (다섯 가지 DNA 추출방법에 의한 옥수수 원료 및 가공시료의 DNA 추출 효율의 비교)

  • Lee, Hun-Hee;Song, Hee-Sung;Kim, Jae-Hwan;Lee, Woo-Young;Lee, Soon-Ho;Park, Sun-Hee;Park, Hye-Kyung;Kim, Hae-Yeong
    • Applied Biological Chemistry
    • /
    • v.48 no.4
    • /
    • pp.331-334
    • /
    • 2005
  • In this study, the effects of five extraction methods for raw and processed corns were compared with respect to the integrity, yields and quality of DNA extracted from them and the results were assessed by PCR analysis. From the comparison of five extraction methods, DNA integrity showed a similar pattern. Amounts of genomic DNA obtained from the five extraction methods varies from $0.25{\mu}g\;to\;234{\mu}g$ per 1 g sample. The DNA yield extracted with CTAB method and DNeasy Plant Maxi kit is greater than that obtained from other extraction methods. These results would be applicable for the selection of an adequate extraction method for specific samples.

Enhancement of immunomodulatory activity by liposome-encapsulated natural phosphodiester bond CpG-DNA in a human B cell line

  • Kim, Dong-Bum;Rhee, Jae-Won;Kwon, Sang-Hoon;Kim, Young-Eun;Choi, Soo-Young;Park, Jin-Seu;Lee, Young-Hee;Kwon, Hyung-Joo
    • BMB Reports
    • /
    • v.43 no.4
    • /
    • pp.250-256
    • /
    • 2010
  • Natural phosphodiester bond CpG-DNA that contains immunomodulatory CpG motifs (PO-DNA) upregulates the expression of proinflammatory cytokines and induces an Ag-driven Th1 response in a CG sequence-dependent manner in mice. In humans, only phosphorothioate backbone-modified CpG-DNA (PS-DNA) and not PO-DNA has immunomodulatory activity. In this study, we found that liposome-encapsulated PO-DNA upregulated the expression of human $\beta$-defensin-2 (hBD-2) and major histocompatibility class II molecules (HLA-DRA) in a CG sequence-dependent and liposome- dependent manner in human B cells. Of the three different liposomes, DOTAP has the unique ability to enhance the immunomodulatory activity of PO-DNA. In contrast, HLA-DRA and hBD-2 promoter activation can be induced by liposome-encapsulated PS-DNA in a CG sequence-independent manner, depending on the CpG-DNA species. Our observations demonstrate that, when encapsulated with a proper liposome in the immune system, natural PO-DNA has the potential to be a useful therapy for the regulation of the innate immune response.