• Title/Summary/Keyword: dna methylation

Search Result 432, Processing Time 0.028 seconds

Epigenetic modification is linked to Alzheimer's disease: is it a maker or a marker?

  • Lee, Jung-Hee;Ryu, Hoon
    • BMB Reports
    • /
    • v.43 no.10
    • /
    • pp.649-655
    • /
    • 2010
  • Alzheimer's disease (AD) is the most common age-dependent neurodegenerative disorder and shows progressive memory loss and cognitive decline. Intraneuronal filaments composed of aggregated hyperphosphorylated tau protein, called neurofibrillary tangles, along with extracellular accumulations of amyloid $\beta$ protein (A$\beta$), called senile plaques, are known to be the neuropathological hallmarks of AD. In light of recent studies, epigenetic modification has emerged as one of the pathogenic mechanisms of AD. Epigenetic changes encompass an array of molecular modifications to both DNA and chromatin, including transcription factors and cofactors. In this review, we summarize how DNA methylation and changes to DNA chromatin packaging by post-translational histone modification are involved in AD. In addition, we describe the role of SIRTs, histone deacetylases, and the effect of SIRT-modulating drugs on AD. Lastly, we discuss how amyloid precursor protein (APP) intracellular domain (AICD) regulates neuronal transcription. Our understanding of the epigenomes and transcriptomes of AD may warrant future identification of novel biological markers and beneficial therapeutic targets for AD.

Epigenetics and Psychiatric Disorders (Epigenetics와 정신장애)

  • Oh, Daeyoung;Yang, Byung-Hwan;Lee, Yu-Sang
    • Korean Journal of Biological Psychiatry
    • /
    • v.15 no.4
    • /
    • pp.243-253
    • /
    • 2008
  • In the post-genomic era, the mechanisms controlling activation of genes are thought to be more important. Gene-environment interactions are crucial in both development and treatment of psychiatric disorders as they are complex genetic disorders. Epigenetics is defined as a change of gene expression that occurs without a change of DNA sequence and can be heritable by certain mechanisms. Epigenetic changes play essential roles in control of gene activation. DNA methylation, chromatin remodeling and RNAi act as key mechanisms for epigenetic modifications of genes. Here, we review the basic mechanisms of epigenetics and discuss their potential involvement of human diseases, including psychiatric disorders.

  • PDF

Epigenetic Regulation of Plant Reproductive Development

  • Vyskot, Boris
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.5
    • /
    • pp.359-366
    • /
    • 2000
  • Epigenetics represents a chromatin-mediated transcriptional repression which plays a control role in both animal and plant development. A number of different mechanisms have been described to be involved in the formation of chromatin structure: especially DNA methylation, nucleosomal histone modification, DNA replication timing, and binding of chromatin remodelling proteins. Epigenetic phenomena include genomic imprinting, dosage compensation of X-chromosome linked genes, mutual allelic interactions, paramutation, transvection, silencing of invasive DNA sequences, etc. They are often unstable and inherited in a non-Mendelian way. A number of epigenetic defects has been preferentially described in floral development. Here, epigenetic phenomena in model angiosperm plants and their corresponding mechanisms are reviewed.

  • PDF

Folate Deficiency and FHIT Hypermethylation and HPV 16 Infection Promote Cervical Cancerization

  • Bai, Li-Xia;Wang, Jin-Tao;Ding, Ling;Jiang, Shi-Wen;Kang, Hui-Jie;Gao, Chen-Fei;Chen, Xiao;Chen, Chen;Zhou, Qin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.21
    • /
    • pp.9313-9317
    • /
    • 2014
  • Fragile histidine triad (FHIT) is a suppressor gene related to cervical cancer through CpG island hypermethylation. Folate is a water-soluble B-vitamin and an important cofactor in one-carbon metabolism. It may play an essential role in cervical lesions through effects on DNA methylation. The purpose of this study was to observe effects of folate and FHIT methylation and HPV 16 on cervical cancer progression. In this study, DNA methylation of FHIT, serum folate level and HPV16 status were measured using methylation-specific polymerase chain reaction (MSP), radioimmunoassay (RIA) and polymerase chain reaction (PCR), respectively, in 310 women with a diagnosis of normal cervix (NC, n=109), cervical intraepithelial neoplasia (CIN, n=101) and squamous cell carcinoma of the cervix (SCC, n=101). There were significant differences in HPV16 status (${\chi}^2=36.64$, P<0.001), CpG island methylation of FHIT (${\chi}^2=71.31$, P<0.001) and serum folate level (F=4.57, P=0.011) across the cervical histologic groups. Interaction analysis showed that the ORs only with FHIT methylation (OR=11.47) or only with HPV 16 positive (OR=4.63) or with serum folate level lower than 3.19ng/ml (OR=1.68) in SCC group were all higher than the control status of HPV 16 negative and FHIT unmethylation and serum folate level more than 3.19ng/ml (OR=1). The ORs only with HPV 16 positive (OR=2.58) or with serum folate level lower than 3.19ng/ml (OR=1.28) in CIN group were all higher than the control status, but the OR only with FHIT methylation (OR=0.53) in CIN group was lower than the control status. HPV 16 positivity was associated with a 7.60-fold increased risk of SCC with folate deficiency and with a 1.84-fold increased risk of CIN. The patients with FHIT methylation and folate deficiency or with FHIT methylation and HPV 16 positive were SCC or CIN, and the patients with HPV 16 positive and FHIT methylation and folate deficiency were all SCC. In conclusion, HPV 16 infection, FHIT methylation and folate deficiency might promote cervical cancer progression. This suggests that FHIT may be an effective target for prevention and treatment of cervical cancer.

Hypermethylation of Suppressor of Cytokine Signaling 1 in Hepatocellular Carcinoma Patients

  • Saelee, Pensri;Chuensumran, Ubol;Wongkham, Sopit;Chariyalertsak, Sunanta;Tiwawech, Danai;Petmitr, Songsak
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3489-3493
    • /
    • 2012
  • Hepatocellular carcinoma (HCC), the most common primary hepatic tumor, is highly prevalent in the Asia-Pacific region, including Thailand. Many genetic and epigenetic alterations in HCC have been elucidated. The aim of this study was to determine whether aberrant methylation of the suppressor of cytokine signaling 1 gene (SOCS1) occurs in HCCs. Methylation specific-PCR assays were performed to identify the methylation status of SOCS1 in 29 tumors and their corresponding normal liver tissues. An abnormal methylation status was detected in 17 (59%), with a higher prevalence of aberrant SOCS1 methylation significantly correlating with HCC treated without chemotherapy (OR=0.04, 95%CI=0.01-0.31; P=0.001). This study suggests that epigenetic aberrant SOCS1 methylation may be a predictive marker for HCC patients.

Gene Silencing Induced by Cytosine Methylation in Transgenic Tomato (형질전환 토마토에서 Cytosine Methylation에 의한 유전자발현 억제)

  • Jung, Seo-Hee;Min, Sung-Ran;Lee, Soo-Young;Park, Ji-Young;Davarpanah, S Javad;Chung, Hwa-Jee;Jeon, Jae-Heung;Liu, Jang-Ryol;Jeong, Won-Joong
    • Journal of Plant Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.323-329
    • /
    • 2007
  • Transgene expression was analyzed in tomato plants. Four lines of neomycin phosphotransferase II gene (NPTII) and the trehalose biosynthetic fusion gene (TPSP) transformed $T_0$ plants showed kanamycin resistance on selection medium. However, the analysis of phenotype (kanamycin resistance) and mRNA expression in $T_1$ plants indicated that the expression of the NPTII and TPSP transgenes was down-regulated to an undetectable level in two independent lines 1 and 11. Southern analysis demonstrated that the lines 1 and 11 had multicopies of the transgenes, whereas the typical transgenic lines 2 and 10 had 1 or 2 copies. DNA methylation analysis using methylation sensitive enzyme detected accumulated CpG DNA methylation on TPSP coding region and CaMV35S promoter region in the line 11, but not the typical transgenic line 2. These results suggest that multicopy transgene in plants is attributed to down-regulation of the transgene expression via transcriptional gene silencing.

Clinicopathological Significance of BRCA1 Promoter Hypermethylation in Thai Breast Cancer Patients

  • Saelee, Pensri;Chaiwerawattana, Arkom;Ogawa, Kumiko;Cho, Young-Man;Tiwawech, Danai;Suktangman, Vimol
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.24
    • /
    • pp.10585-10589
    • /
    • 2015
  • Breast cancer susceptibility gene 1 (BRCA1), mapped on chromosome 17q21, is implicated in the mechanisms of cellular DNA repair. Inactivation of this gene is involved in the development of many human cancers, including breast cancer. This study aimed to investigate the prognostic value of BRCA1 promoter hypermethylation and expression in breast cancer cases. Sixty-one breast cancers were examined for BRCA1 hypermethylation by methylation-specific polymerase chain reaction (PCR), and 45 paired normal breast tissues were analyzed for altered BRCA1 mRNA levels by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR). Aberrant methylation status in BRCA1 was detected in 15 of 61 cases (24.6%), while reduced expression was found in 7 of 45 (15.6%). BRCA1 hypermethylation was statistically associated with tumor grade III (p=0.04), a high frequency of stage IIB (p=0.02), and triple-negative phenotype (OR= 3.64, 95%CI =1.1-12.3, p=0.03). Our findings indicated that BRCA1 promoter hypermethylation is a useful prognostic marker for breast cancer.

Enzymatic DNA oxidation: mechanisms and biological significance

  • Xu, Guo-Liang;Walsh, Colum P.
    • BMB Reports
    • /
    • v.47 no.11
    • /
    • pp.609-618
    • /
    • 2014
  • DNA methylation at cytosines (5mC) is a major epigenetic modification involved in the regulation of multiple biological processes in mammals. How methylation is reversed was until recently poorly understood. The family of dioxygenases commonly known as Ten-eleven translocation (Tet) proteins are responsible for the oxidation of 5mC into three new forms, 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Current models link Tet-mediated 5mC oxidation with active DNA demethylation. The higher oxidation products (5fC and 5caC) are recognized and excised by the DNA glycosylase TDG via the base excision repair pathway. Like DNA methyltransferases, Tet enzymes are important for embryonic development. We will examine the mechanism and biological significance of Tet-mediated 5mC oxidation in the context of pronuclear DNA demethylation in mouse early embryos. In contrast to its role in active demethylation in the germ cells and early embryo, a number of lines of evidence suggest that the intragenic 5hmC present in brain may act as a stable mark instead. This short review explores mechanistic aspects of TET oxidation activity, the impact Tet enzymes have on epigenome organization and their contribution to the regulation of early embryonic and neuronal development.

Molecular Characterization of Porcine DNA Methyltransferase I

  • Lee, Yu-Youn;Kang, Hye-Young;Min, Kwan-Sik
    • Reproductive and Developmental Biology
    • /
    • v.34 no.4
    • /
    • pp.283-288
    • /
    • 2010
  • During normal early embryonic development in mammals, the global pattern of genomic DNA methylation undergoes marked. changes. The level of methylation is high in male and female gametes. Thus, we cloned the cDNA of the porcine DNA methyltransferase 1 (Dnmt1) gene to promote the efficiency of the generation of porcine clones. In this study, porcine Dnmt1 cDNA was sequenced, and Dnmt1 mRNA expression was detected by reverse transcription-polymerase reaction (RT-PCR) in porcine tissues during embryonic development. The porcine Dnmt1 cDNA sequence showed more homology with that of bovine than human, mouse, and rat. The complete sequence of porcine Dnmt1 cDNA was 4,774-bp long and consisted of an open reading frame encoding a protein of 1611 amino acids. The amino acid sequence of porcine DNMT1 showed significant homology with those of bovine (91%), human (88%), rat (76%), and mouse (75%) Dnmt1. The expression of porcine Dnmt1 mRNA was detected during porcine embryogenesis. The mRNA was detected at stages of porcine preimplantation development (1-cell, 2-cell, 4-cell, 8-cell, morula, and blastocyst stages). It was also abundantly expressed in tissues (lung, ovary, kidney and somatic cells). Further investigations are necessary to understand the complex links between methyltransferase 1 and the transcriptional activity in cloned porcine tissues.