• 제목/요약/키워드: disulfide bonds

검색결과 67건 처리시간 0.02초

질량분석기를 활용한 효과적 이황화결합 분석법 개발 (Mass Spectrometry-Based Strategy for Effective Disulfide Bond Identification)

  • 진종화;민호필;권오승;오현정;김종원;박철환
    • Korean Chemical Engineering Research
    • /
    • 제55권1호
    • /
    • pp.27-33
    • /
    • 2017
  • 이황화결합(Disulfide Bond)은 다양한 생리학적 혹은 병리학적 과정 중 단백질번역 후 변형(Post-Translational Modifications) 과정 중에 형성된다. 그러므로 이황화결합에 대한 정보는 단백질의 화학적 구조를 보다 종합적으로 이해하는데 매우 중요한 일이다. 질량분석기를 이용한 이황화결합 분석은 매우 효과적이며, 현재까지 질량 분석기를 활용한 다양한 이황화결합 분석법들이 개발되었다. 그러나, 대부분의 이황화결합 분석법의 경우, 이황화결합 분석 시 자유-시스테인잔기(Free Thiol Residues) 분석을 고려하지 않았다. 본 연구에서는 이황화결합에 관여하는 시스테인/자유-시스테인에 초점을 두고 총 4단계(1단계: 아미노산 서열을 통한 이황화결합 가능 부위를 예측, 2단계: 자유시스테인의 존재 유무의 확인, 3단계: 질량 분석기를 활용한 이황화결합 분석, 4단계: 이황화결합 분석법의 종합적인 검증)의 분석법을 개발하였다. 나아가, 본 연구에서 개발된 분석 기법을 실제 휴먼 유래 재조합 단백질(HRPE1)에 적용함으로써 개발된 이황화결합 분석법의 효용성을 확인하였다. HRPE1의 경우, 총 6개의 이황화결합(Inter-chain 형태: 1, Intra-chain 형태: 5)으로 구성된 것을 최종 확인하였다.

Escherichia coli Cytoplasmic Expression of Disulfide-Bonded Proteins: Side-by-Side Comparison between Two Competing Strategies

  • Angel Castillo-Corujo;Yuko Uchida;Mirva J. Saaranen;Lloyd W. Ruddock
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권5호
    • /
    • pp.1126-1134
    • /
    • 2024
  • The production of disulfide bond-containing recombinant proteins in Escherichia coli has traditionally been done by either refolding from inclusion bodies or by targeting the protein to the periplasm. However, both approaches have limitations. Two broad strategies were developed to allow the production of proteins with disulfide bonds in the cytoplasm of E. coli: i) engineered strains with deletions in the disulfide reduction pathways, e.g. SHuffle, and ii) the co-expression of oxidative folding catalysts, e.g. CyDisCo. However, to our knowledge, the relative effectiveness of these strategies has not been properly evaluated. Here, we systematically compare the purified yields of 14 different proteins of interest (POI) that contain disulfide bonds in their native state when expressed in both systems. We also compared the effects of different background strains, commonly used promoters, and two media types: defined and rich autoinduction. In rich autoinduction media, POI which can be produced in a soluble (non-native) state without a system for disulfide bond formation were produced in higher purified yields from SHuffle, whereas all other proteins were produced in higher purified yields using CyDisCo. In chemically defined media, purified yields were at least 10x higher in all cases using CyDisCo. In addition, the quality of the three POI tested was superior when produced using CyDisCo.

대두단백겔의 물성에 미치는 분자결합력 저해 시약의 영향 (Effects of Various Reagents on Textural Properties of Soy Protein Gel)

  • 배동호;정호선
    • 한국식품저장유통학회지
    • /
    • 제5권1호
    • /
    • pp.65-71
    • /
    • 1998
  • The changes in gel characteristics of soy protein as a result of various reagents that alter specific interactions which affect the formation and textural properties of gels, were studied. The reagents were added to 15% soy protein solutions prior to heat treatment. The gels were not formed with urea, indicating that hydrogen bonds significantly contributed to the formation and hardness of soy protein gel. Hydrophobic interactions and disulfide bonds compensated for hydrogen bonds and the contributions of electrostatic interactions to gel hardness are relatively insignificant. The farce primarily responsible for gel cohesiveness appeared to be disulfide bonds, because a significant decrease in cohesiveness was found only with the presence of N-ethylmaleimide. Adhesiveness decreased only with the addition of urea, and thus the contribution of hydrogen bonding to adhesiveness of gel could be concluded to be resent. However, adhesiveness was suggested to be interpreted not only wile molecular forces involved in gel formation but also with hydration properties of protein.

  • PDF

Structure-activity relationships of the intramolecular disulfide bonds in coprisin, a defensin from the dung beetle

  • Lee, Jaeho;Lee, Daeun;Choi, Hyemin;Kim, Ha Hyung;Kim, Ho;Hwang, Jae Sam;Lee, Dong Gun;Kim, Jae Il
    • BMB Reports
    • /
    • 제47권11호
    • /
    • pp.625-630
    • /
    • 2014
  • Defensins, which are small cationic molecules produced by organisms as part of their innate immune response, share a common structural scaffold that is stabilized by three disulfide bridges. Coprisin is a 43-amino acid defensin-like peptide from Copris tripartitus. Here, we report the intramolecular disulfide connectivity of cysteine-rich coprisin, and show that it is the same as in other insect defensins. The disulfide bond pairings of coprisin were determined by combining the enzymatic cleavage and mass analysis. We found that the loss of any single disulfide bond in coprisin eliminated all antibacterial, but not antifungal, activity. Circular dichroism (CD) analysis showed that two disulfide bonds, Cys20-Cys39 and Cys24-Cys41, stabilize coprisin's ${\alpha}$-helical region. Moreover, a BLAST search against UniProtKB database revealed that coprisin's ${\alpha}$-helical region is highly homologous to those of other insect defensins.

천연 단백질섬유의 세트성 증진 (Improvement of the Setting Properties of Natural Protein Fibers)

  • Jang, Byung-Ho;Nam, Sung-Woo
    • 한국염색가공학회지
    • /
    • 제2권2호
    • /
    • pp.14-19
    • /
    • 1990
  • The setting behavior of disulfide-enriched wool and disulfide-crosslinked silk obtained by treatment with a disulfide-containing crosslinking agent, bis $(\beta-isocyanatoethyl)$ dissulfide was compared with that of untreated wool and silk under the absence and the presence of a reducing agent. Rearrangment of secondary bonds facilitated by cleavage of crosslinks as well as rearrangement of crosslinks itself seems to play an important role in the set stability.

  • PDF

Disulfide 가교 견섬유의 Set 성 (Setting Properties of Disulfide-Crosslinked Silk Fiber)

  • 남성우;장병호
    • 한국염색가공학회지
    • /
    • 제1권1호
    • /
    • pp.1-6
    • /
    • 1989
  • The reaction of silk with a disulfide-containing crosslinking agent, i.e. bis($\beta$-isocyanatoethyl)disulfide(BIED), was studied in an attempt to obtain disulfide-crosslinked silk. The setting properties of disulfide-crosslinked silk fibers were studied. The permanent set values of single fibers were evaluated after the set fibers were relaxed in boiling water. When single fibers were set in boiling water or in boiling alkaline solution, the permanent set values of BIED-treated silk fibers were less than those of untreated silk fibers. When the fibers were treated with 2% thioglycolic acid solution at $60^\circ{C}$ followed by oxidation, settability of BIED-treated silk was better than that of untreated silk. The rearrangement of secondary bonds faciliated by cleavage of crosslinks as well as the rearrangement of crosslinks itself seems to be an important role in the set stability.

  • PDF

Collisionally-Activated Dissociation of Peptides with a Disulfide Bond: Confirmation of the Mobile-Proton Model Based Explanation

  • Lee, Youn-Jin;Oh, Han-Bin
    • Mass Spectrometry Letters
    • /
    • 제1권1호
    • /
    • pp.5-8
    • /
    • 2010
  • In the present study, collisionally-activated dissociation (CAD) experiments were performed under low energy collision conditions in six peptides containing a disulfide bond. Fragments produced as a result of the cleavage of a disulfide bond were obtained after CAD in four peptides (bactenecin, TGF-$\alpha$, cortistantin, and linearly linked peptide, Scheme 1) with basic amino acid residues. In contrast, the CAD analysis of two peptides with no basic residue (oxytocin and tocinoic acid) rarely produced fragments indicative of cleavage of a disulfide bond. These results are consistent with the mobile proton model suggested by the McLuckey and O'air groups (ref. 22 and 23); nonmobile protons sequestered at basic amino acid residues appear to promote the cleavage of disulfide bonds.

Intramolecular Disulfide Bonds for Biogenesis of Calcium Homeostasis Modulator 1 Ion Channel Are Dispensable for Voltage-Dependent Activation

  • Kwon, Jae Won;Jeon, Young Keul;Kim, Jinsung;Kim, Sang Jeong;Kim, Sung Joon
    • Molecules and Cells
    • /
    • 제44권10호
    • /
    • pp.758-769
    • /
    • 2021
  • Calcium homeostasis modulator 1 (CALHM1) is a membrane protein with four transmembrane helices that form an octameric ion channel with voltage-dependent activation. There are four conserved cysteine (Cys) residues in the extracellular domain that form two intramolecular disulfide bonds. We investigated the roles of C42-C127 and C44-C161 in human CALHM1 channel biogenesis and the ionic current (ICALHM1). Replacing Cys with Ser or Ala abolished the membrane trafficking as well as ICALHM1. Immunoblotting analysis revealed dithiothreitol-sensitive multimeric CALHM1, which was markedly reduced in C44S and C161S, but preserved in C42S and C127S. The mixed expression of C42S and wild-type did not show a dominant-negative effect. While the heteromeric assembly of CALHM1 and CALHM3 formed active ion channels, the co-expression of C42S and CALHM3 did not produce functional channels. Despite the critical structural role of the extracellular cysteine residues, a treatment with the membrane-impermeable reducing agent tris(2-carboxyethyl) phosphine (TCEP, 2 mM) did not affect ICALHM1 for up to 30 min. Interestingly, incubation with TCEP (2 mM) for 2-6 h reduced both ICALHM1 and the surface expression of CALHM1 in a time-dependent manner. We propose that the intramolecular disulfide bonds are essential for folding, oligomerization, trafficking and maintenance of CALHM1 in the plasma membrane, but dispensable for the voltage-dependent activation once expressed on the plasma membrane.

누에 배양세포로부터 분리한 Protein Disulfide Isomerase 유전자의 발현 특성 (Molecular Characterization of a Bombyx mori Protein Disulfide Isomerase(bPDI))

  • 구태원;윤은영;황재삼;강석우;권오유
    • 생명과학회지
    • /
    • 제11권5호
    • /
    • pp.415-422
    • /
    • 2001
  • Many secreted proteins have disulfide bonds that are important for their structure and function. Protein disulfide isomerase (PDI, EC 5.3.1.4.), an enzyme that catalyzes the formation and rearrangement of thiol/disulfide exchange reactions, is a resident of the endoplasmic reticulum (ER). The subcellular localization and its function as catalyst of disulfide bond formation in the biosynthesis of secretory and cell membrane proteins suggest that PDI plays a key role in the secretory pathway. We have isolated a cDNA encoding protein disulfide isomerase from Bombyx mori(bPDI). It has been characterized under ER stress conditions (dominantly induced by calcium ionophore A23187, tunicamycin and DTT), which is known to cause an accumulation of unfolded proteins in the ER. Furthermore, It has also been examined for tissue distribution(pronounced at the fat body), hormonal regulation (juvenile hormone, insulin and juvenile +transferrin; however, it is not effected by transferrin alone), and the effect of exogenous bacteria (peak at 16 h after infection) on the bPDI mRNA expression. The results suggest that bPDI is a member of the ER stress protein group, and it may play an important role in exogenous bacterial infection in fat body, and that homones regulate its expression.

  • PDF

Protein Disulfide Isomerase Is Cleaved by Caspase-3 and -7 during Apoptosis

  • Na, Kyung Sook;Park, Byoung Chul;Jang, Mi;Cho, Sayeon;Lee, Do Hee;Kang, Sunghyun;Lee, Chong-Kil;Bae, Kwang-Hee;Park, Sung Goo
    • Molecules and Cells
    • /
    • 제24권2호
    • /
    • pp.261-267
    • /
    • 2007
  • Apoptotic signals are typically accompanied by activation of aspartate-specific cysteine proteases called caspases, and caspase-3 and -7 play crucial roles in the execution of apoptosis. Previously, using the proteomic approach, protein disulfide isomerase (PDI) was found to be a candidate substrate of caspase-7. This abundant 55 kDa protein introduces disulfide bonds into proteins (via its oxidase activity) and catalyzes the rearrangement of incorrect disulfide bonds (via its isomerase activity). PDI is abundant in the ER but is also found in non-ER locations. In this study we demonstrated that PDI is cleaved by caspase-3 and -7 in vitro. In addition, in vivo experiment showed that it is cleaved during etoposide-induced apoptosis in HL-60 cells. Subcellular fractionation showed that PDI was also present in the cytosol. Furthermore, only cytosolic PDI was clearly digested by caspase-3 and -7. It was also confirmed by confocal image analysis that PDI and caspase-7 partially co-localize in both resting and apoptotic MCF-7 cells. Overexpression of cytosolic PDI (ER retention sequence deleted) inhibited cell death after an apoptotic stimulus. These data indicate that cytosolic PDI is a substrate of caspase-3 and -7, and that it has an anti-apoptotic action.