• Title/Summary/Keyword: disturbance estimation

Search Result 326, Processing Time 0.044 seconds

Constraint-Combined Adaptive Complementary Filter for Accurate Yaw Estimation in Magnetically Disturbed Environments

  • Jung, Woo Chang;Lee, Jung Keun
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.81-87
    • /
    • 2019
  • One of the major issues in inertial and magnetic measurement unit (IMMU)-based 3D orientation estimation is compensation for magnetic disturbances in magnetometer signals, as the magnetic disturbance is a major cause of inaccurate yaw estimation. In the proposed approach, a kinematic constraint is used to provide a measurement equation in addition to the accelerometer and magnetometer signals to mitigate the disturbance effect on the orientation estimation. Although a Kalman filter (KF) is the most popular framework for IMMU-based orientation estimation, a complementary filter (CF) has its own advantages over KF in terms of mathematical simplicity and ease of implementation. Accordingly, this paper introduces a quaternion-based CF with a constraint-combined correction equation. Furthermore, the weight of the constraint relative to the magnetometer signal is adjusted to adapt to magnetic environments to optimally deal with the magnetic disturbance. In the results of our validation experiments, the average and maximum of yaw errors were $1.17^{\circ}$ and $1.65^{\circ}$ from the proposed CF, respectively, and $8.88^{\circ}$ and $14.73^{\circ}$ from the conventional CF, respectively, showing the superiority of the proposed approach.

A Study on the PES Estimation for Developing High-TPI HDD (HIGH-TPI HDD 구현을 위한 PES ESTIMATION에 관한 연구)

  • Koh, Jeong-Seok;Kang, Seong-Woo;Han, Yun-Sik;Kim, Young-Hoon;Hwang, Tae-Yeon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.122-127
    • /
    • 2002
  • A frequency-domain PES estimation and its prediction method are proposed for the tightly-coupled servo/mechanical design of high-TPI HDD system above 100 kTPI. The major two disturbance energies which are related with mechanical vibrations inside of HDD are used to predict the drive-level PES, while considering closed-loop servo dynamics. One is the torque disturbance which mainly comes from aerodynamic excitation of HSA system and the other is the displacement disturbance from disk-spindle dynamics. In order to obtain the accurate error transfer function of closed-loop servo control, the plant model is measured by accurate experiment. The measured PES is compared with predicted one in terms of frequency-domain PES spectrum and its standard variation value. It is proved that the proposed frequency-domain PES estimation/prediction method is capable of predicting drive-level PES of high-TPI hard disk drive.

  • PDF

Robust Disturbance Compensation for Servo Drives Fed by a Matrix Converter

  • Park, Ki-Woo;Chwa, Dong-Kyoung;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.791-799
    • /
    • 2009
  • This paper presents a time-varying sinusoidal disturbance compensation method (based on an adaptive estimation scheme) for induction motor drives fed by a matrix converter. In previous disturbance accommodation methods, sinusoidal disturbances with unknown time-invariant frequencies have been considered. However, in the new method proposed here, disturbances with unknown time-varying frequencies are considered. The disturbances can be estimated by using a disturbance accommodating observer, and an additional control input is added to the induction machine drive. The stability analysis is carried out considering the disturbance estimation error and simulation results are shown to illustrate the performance of the proposed solution.

Design of Lane Keeping Steering Assist Controller Using Vehicle Lateral Disturbance Estimation under Cross Wind (횡풍하의 차량 외란 추정을 이용한 차선 유지 조향 보조 제어기 설계)

  • Lim, Hyeongho;Joa, Eunhyek;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.3
    • /
    • pp.13-19
    • /
    • 2020
  • This paper presents steering controller for unintended lane departure avoidance under crosswind using vehicle lateral disturbance estimation. Vehicles exposed to crosswind are more likely to deviate from lane, which can lead to accidents. To prevent this, a lateral disturbance estimator and steering controller for compensating disturbance have been proposed. The disturbance affecting lateral motion of the vehicle is estimated using Kalman filter, which is on the basis of the 2-DOF bicycle model and Electric Power Steering (EPS) module. A sliding mode controller is designed to avoid unintended the lane departure using the estimated disturbance. The controller is based on the 2-DOF bicycle model and the vision-based error dynamic model. A torque controller is used to provide appropriate assist torque to driver. The performance of proposed estimator and controller is evaluated via computer simulation using Matlab/Simulink.

Time-domain Approaches for Input Disturbance Observer

  • Kim, Kyung-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.22-25
    • /
    • 2005
  • In the paper, algorithms for disturbance observers are newly presented in the time-domain. Attention is paid to observing a ramp disturbance by introducing an integral term to the output equation of a constant disturbance observer. In order to reduce the sensitivity to the measurement noise, the disturbance observer is combined with the state observer. It will be shown that the estimation dynamics can be arbitrarily chosen by assigning the eigenvalues of a characteristic equation. Also, we provide the analysis of observer behaviors subject to non-ramp-style disturbances. Finally, we propose the generalized disturbance observer that accurately estimates disturbances of higher order in time series expansion.

  • PDF

A Nonlinear Speed Control for a PM Synchronous Motor Using a Simple Disturbance Estimation Technique

  • Lee Na-Young;Kim Kyeong-Hwa;Youn Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.326-330
    • /
    • 2001
  • A nonlinear speed control for a permanent magnet (PM) synchronous motor using a simple disturbance estimation technique is presented. By using a feedback linearization, scheme, the nonlinear motor model can be linearized. To compensate an undesirable output performance under the mismatch of the system parameters and load conditions the controller parameters will be estimated by using a disturbance observer theory. Since only the two reduced-order observers are used for the parameter estimation, the observer designs are considerably simple and the computational load of the controller for parameter estimation is negligibly small. The proposed control scheme is implemented on a PM synchronous motor using DSP TMS320C31 and the effectiveness is verified through the comparative experiments.

  • PDF

Design and Application of a New Sliding Mode Controller with Disturbance Estimator

  • Park, Seung-Bok;Ham, Joon-Ho;Park, Jong-Sung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.4
    • /
    • pp.94-100
    • /
    • 2002
  • The conventional sliding mode control (SMC) technique requires a priori knowledge of the upperbounds of disturbances and/or modeling uncertainties to assure robustness. This, however, may not be easy to obtain in practical situation. This paper presents a new methodology, a sliding mode control with disturbance estimator (SMCDE), which offers a robust control performance without a priori knowledge about the disturbance. The proposed technique is featured by an average value of the imposed disturbance over a certain period. A nonlinear spring-mass-damper system and a two-link robot system are adopted as illustrative application examples. Control performances such as estimation error and tracking error are compared between the proposed methodology and conventional scheme.

The State Estimation by Unknown Disturbance Observer of Underwater Vehicle System for Robust Control (강인한 제어를 위한 수중이동시스템의 상태추정에 대한 연구)

  • Lee, Jin-Woo;Kim, Hwan-Seong;An, Young-Joo
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.4
    • /
    • pp.169-175
    • /
    • 2003
  • In this paper, and estimation method for estimating the states of underwater vehicle systems with external unknown disturbance is proposed. First, the dynamics of underwater vehicle are induced by Taylor series expansion in the vertical plane and horizontal plane, respectively. For constructing the system model, the external efforts, i.e., the sea surface disturbances, the current, wave and etc., are regarded as external unknown disturbances. Thus the disturbance is added as external input into state-space form of underwater vehicle system. To estimate the state of systems with unknown disturbance, a disturbance observer which does not effected the external unknown input is proposed, and the existence condition for the observer is given. Finally, the effectiveness of the proposed disturbance observer for robust control of underwater vehicle systems is verified by using numerical simulation.

Adaptive Robust Swing-up and Balancing Control of Acrobot using a Fuzzy Disturbance Observer (퍼지 외란 관측기법을 이용한 아크로봇의 적응형 강인 스윙업 및 밸런싱제어)

  • Jeong, Seongchan;Lee, Sanghyob;Hong, Young-Dae;Chwa, Dongkyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.5
    • /
    • pp.346-352
    • /
    • 2016
  • This paper proposes an adaptive robust control method for an acrobot system in the presence of input disturbance. The acrobot system is a typical example of the underactuated system with complex nonlinearity and strong dynamic coupling. Also, disturbance can cause limit cycle phenomenon which appears in the acrobot system around the desired unstable equilibrium point. To minimize the effect of the disturbance, we apply a fuzzy disturbance estimation method for the swing-up and balancing control of the acrobot system. In this paper, both disturbance observer and controller for the acrobot system are designed and verified through mathematical proof and simulations.