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A nonlinear speed control for a permanent magnet (PM)
synchronous motor using a simple disturbance estimation
technique is presented. By using a feedback linearization scheme,
the nonlinear motor model can be linearized. To compensate an
undesirable output performance under the mismatch of the
system parameters and load conditions the controller parameters
will be estimated by using a disturbance observer theory. Since
only the two reduced-order observers are used for the parameter
estimation, the observer designs are considerably simple and the
computational load of the controller for parameter estimation is
negligibly small. The proposed control scheme is implemented
on a PM synchronous motor using DSP TMS320C31 and the
effectiveness is verified through the comparative experiments.

I. INTRODUCTION

In recent years, feedback linearization techniques
have been applied to the control of the nonlinear plants.
The basic idea is to first transform a nonlinear system into
a linear one by a nonlinear feedback, and then use the
well-known linear design techniques to complete the
controller design [1]. These techniques, however, require
the full knowledge of the system parameters and load
conditions with the sufficient accuracy. In general, PM
synchronous motor drive systems are faced with
unavoidable disturbances or variations of some parameters
such as the inertia, viscous friction coefficient and the flux
linkage.

This paper presents a nonlinear speed control method
for a PM synchronous motor using a simple disturbance
estimation technique. Under the assumption that the
disturbance torque and flux linkage are unknown, the
input-output linearization is performed. The resultant
model has the nonlinear disturbances in its input-output
relation caused by the unknown disturbance torque and the
flux linkage variation. The disturbance torque and flux
linkage will be estimated by using a disturbance observer
theory. Since only the two reduced-order observers are
used for the parameter estimation, the observer designs are
considerably simple and the computational load of the
controller for parameter estimation is negligibly small.
The nonlinear disturbances by the incomplete linearization
can be effectively compensated by using the proposed
control scheme, and thus, a desired dynamic performance
and a zero steady-state error can be obtained. The whole
control processing is implemented by the software of DSP
TMS320C31 for a PM synchronous motor driven by a
three-phase voltage-fed PWM inverter.

II. MODELING OF PM SYNCHRONOUS MOTOR

The stator voltage equations of a PM synchronous
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motor in the synchronous reference frame are described as
follows [2]:

Voo = Ry +Li + L0 iy +A,0, m

Ve =Riy+Li,~Loi, ()]
where R; is the stator resistance, L, is the stator inductance,
w, is the electrical rotor angular velocity, and A, is the

flux linkage established by the permanent magnet. The
speed dynamics is expressed as
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where J is the moment of inertia of the rotor and its

attached load, B is the viscous friction coefficient, p is the

number of pole pairs, and 7, is the load torque. Using w,,

®

lss, and iz as the state variables, the nonlinear state
equation of a PM synchronous motor can be expressed as
follows:
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III. INPUT-OUTPUT FEEDBACK
LINEARIZATION

To linearize the nonlinear model in (4), the controlled
variable is differentiated with respect to time until the
input appears. This can be easily done by introducing the
Lie derivative of a state function A(x):R” — R along a

vector field  f{x)=(f}, - f,) as follows [1]:
L,h=Vh-f=z":§ﬁf,_(x) Q)
i OX,

Lh=L,(L"h). 6
When the parameters and load of the PM synchronous
motor are exactly known, (4) can be transformed to a
linear decoupled model of Brunovski canonical form
through the linearization technique [3]. Then, the speed
controller can be easily designed using the linear control
strategy. However, PM synchronous motor drive systems
are faced with external disturbances or some parameter
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variations. This yields a steady-state error as well as a
deteriorated transient response due to the incomplete
linearization. Since the flux linkage and the disturbance
torque caused by the variation of the mechanical
parameters have direct influences on the speed control
performance, they will be considered as dominant
parameters. From the relationship between the developed
torque and mechanical load, the torque equation of the
machine can be expressed as follows:

T, = J()d‘” B(-—l—)m,+7:, )
p/ dt P

T,,=A/(l]ﬁ"°—’+AB(l)m,+TL ®
p/ at p
where AJ=J~-J,, AB=B- B,, subscript “;” denotes

the nominal value, and Ty is the disturbance torque. Using
(7), the speed dynamics is expressed as

0 =325 B, g ©
27, g,

Under the assumption that the disturbance torque and flux
linkage are unknown, (4) can be rewritten using the
estimated values as follows:

x=f(x)+gyv, +gv, +d,AT, +d,A), (10)
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and the symbol “*” denotes the estimated quantity. In
order to avoid any zero dynamics, @, and iy are chosen
as the outputs [4]. The objective of the control is to
maintain the speed and d-axis current to their reference
values or trajectories with the desired output dynamic
performance. For this objective, the new state variables
are defined as follows:

7 =h(x)= 0, (D
3p’: . B .

z, =Lih,(x)=3€—xmth—7”— - 1’ Zy, (12)

zy=hy(x) =1y (13)

where z; is the speed, z; is the computed acceleration

using the estimated parameters, and z; is the d-axis current.
By using (11)-(13) as the state variables, (10) can be -

rewritten as follows:
2, =2, +Lyh AT, + L,k Ak, (14)
sy = Dh 4+ LyLh v, +T, Lyh + 4, -Lyh,
+ Lo L - AT + Lo L by A2, (15)
Zy = Lf-h2 + L,k vy (16)
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To linearize the nonlinear state equations in (14)-(16), the

. * *
control input voltages v, and v, can be expressed as

follows:

(”‘2‘} - D(x)"("
v(l.\'

where v, and v, are the linear control inputs by which the
desired output error dynamics can be assigned, and D(x) is
the decoupling matrix defined as
L,L.h, O
Dix)=| &7 . (18)
) ( 0 L,,hz)
To calculate (18), the inverse of D{(x) has to be calculated.
However, if the estimated value for the flux linkage
reaches a particular value, the inverse of D(x) can not be
calculated since it becomes a singular matrix. The
estimated value that makes D(x) be singular can be
obtained using det D(x)=0 as im =0. This singularity
has to be considered in the estimation process.
Everywhere except for this singular point, the control
input voltages in (17) can be always computed. Using (17),
the nonlinear motor model becomes an incompletely
linearized model expressed as

szhl - Td 'Ldlhl —7"m

Lph+vi | (17)
—Lf-h2 +v,

2 =z, + Lyh AT, + Lk - AL, a9
2, =vi+ LyL by - AT, + LyLjhy - OA,, (20)
i, =v,. @@n

As a result of the incomplete linearization due to the
parameter deviations, the nonlinear model cannot be
transformed to a linear decoupled model of Brunovski
canonical form and the nonlinear disturbances exist in its
input-output relation. Since such disturbances directly
influence on the speed control performance, their effects
must be quickly removed. Using the transformed states z,
the linear control is selected as follows:

v, ==k, (2, — @)~k (2, - @) + @, (22)

v, = —ky(2, —iy) i 23
where ' and i) are the commands for the speed and

d-axis current, respectively. Under the perfect parameter
matching condition, that is, AT,~0 and AA,, =0, this linear
control gives the second-order speed error dynamics and
the first-order d-axis current error dynamics as follows:

(5% +koy5+ ko e, =se,(0)+¢,(0) (24)
(s+ky)e, =ey,(0) 25)
where e, =, -w,, €, =i . —i, and s is a Laplace
operator. The desired poles can be easily chosen by
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adjusting the controller gains &, , k and k, through

w2’
the pole placement technique. Also, to improve the control
performance at steady-state, an integral action can be
introduced in the linear control as follows: -

Vi =~k @ =0t~k (2~ 0]) = ki (2, ~ ) + ]
(26)
Vi = —ky I(Zs —ig )t =k (23 —ip) + 1y, @7

IV. PARAMETER ESTIMATION USING
DISTURBANCE OBSERVER THEORY

Two disturbance observers are employed for the
estimation of the disturbance torque and flux linkage,
respectively. To estimate the parameters using the
disturbance observer theory, the estimated parameters
need to be unknown constant or slowly-varying. Since the
flux linkage varies slowly with the temperature rise, A,
can be assumed to be constant during each sampling
interval as follows:

: i, =0 (28)
Even though the disturbance torque T is not a constant
parameter under the mechanical parameter variation such
as the inertia ‘and viscous friction coefficient, if the
sampling interval is sufficiently fast as compared with the
time variation of this unknown disturbance, T} also can be
assumed to be constant during each sampling interval as
follows [5]-[6]:

4 T,=0. - (29)
From (28) and the g-axis stator voltage equation in (1), the
augmented system for the flux linkage estimation can be
expressed as follows: »

% =Ax +Bu +d (30)
»n=Cx . (€29
where X, =[x, xlb]T:[iq; 9 G =[t 0]
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The observability matrix for the system in (30) and (31)
becomes as follows:
W =[¢] ACT) (32)
Since the rank of a matrix W, is 2, the full state vector is
completely observable. However, the system states are
decomposed of the state variable that can be directly
measurable and unmeasurable state. To simply estimate
this unmeasurable state, a reduced-order observer can be
used as follows:
%y =(ap - Liay,)%, +ayx, +bu, +d,

+L (%, —a,x,—bu -d) (33)
where: L; is an observer gain for the flux linkage
estimation. For the implementation of (33), the derivative
of the measured current is required. However, the value of

%,, 1s unacceptable because the current signal is
generally noisy. To overcome this problem, a new state is
defined as

Xy =%, —Ly =%,-Lx,. G4
In terms of this state, the observer for the flux linkage
estimation is given as follows [19]:

X = (ay — Liap)%, +(ay, - Lia,) )x,

+(b, - Lby, +d,—Ld,. (35)

Then, the derivative of the current signal is no longer used
directly. If the estimation error is chosen as ¢, = (x,, - £,)
the error dynamics of the observer can be expressed as

e =(a,,-La,)e, . 36)
The dynamic characteristics of the observer can be easily
determined by the observer gain L,. From (9) and (29), the
augmented system for the disturbance torque estimation
can be expressed as follows:

%, = Gx, + Hu, 37)

»y =Cox, (38)
where x,=[x,, x,]" =[o, T, C,=[1 0],

Uy =i, y=o,

2
G=(g” g|2]= - "f , H:(h')= %i—lm .
ga 8n 0 0 h 6
Since the rank of the observability matrix for the system in
(37) and (38)
w,=[C] G'CI] . (39)
is 2, the full state vector is completely observable.
Similarly, the system states are decomposed of the directly
measurable and unmeasurable states. A reduced-order
observer for estimating this unmeasurable state can be
expressed as follows:
X =Xy =Ly, =%, —Lyx,, (40)

X2 = (80— L181)%y, + (8 —L,g,)x,, + (b _Lzél Ju, @1

where h = 3 _P_2 4+ and L, is an observer gain for the
1 2 J” m

disturbance torque estimation. Notice that the estimated

value 7 is used in (41). If the estimation error is chosen

&~

as e, =(x,, —%,,), the error dynamics of the observer can

be expressed as
€, =(8n—L,g,)e, ~ Ak - Lyu, 42)

2
where Ap = -4 =2p—Alm-
. 2 JD

Because the term Ak, disappears to zero as the estimated
flux linkage converges to its real value, the dynamic
characteristics of the observer can be determined by the
observer gain L,. The flux linkage and disturbance torque
can be simultaneously estimated by using (34)-(35) and
(40)-(41). The estimated parameters are used for the
computation of the control input voltages in (17) and the
state z, in (12) to compensate the nonlinear disturbances
caused by the parameter variations.

- 328 -



V. EXPERIMENTS TABLE |
SPECIFICATIONS OF A PM SYNCHRONOUS MOTOR
. Rated power 400 W Number of poles 4
The. overall blqck d.1agram for _the proposed control Rated torque | 1.27Nm | Stator resistance | 3.0 03
scheme is shown in Fig. 1. To improve the c'ontrol Magnetic flux_| 0.153 Wb | Stator inductance | 10.5 mH
performance at steady-state, the linear control with an Rated speed 3000 rpm | Moment of inertia | 1.75x10*Nm-s?
integrator in (26) and (27) is employed. Then, the large
portions of the unknown disturbance are compensated by TABLE II
. . . FOUR CONTROL METHODS FOR THE PERFORMANCE
the disturbance observer and the remaining small portions COMPARISON
are effectively rejected by the integral action. The nominal Method A |Linear control in (22) and (23)
parameters of a PM synchronous motor used for the without disturbance torque observer
simulations and experiments are listed in Table I. For the Method B |Linear control in (22) and (23)
performance comparison, four control methods including with disturbance torque observer
the proposed control scheme will be used, which are listed Method C  |Linear control in (26) and (27)
in Table II. The d-axis current command is given as zero with disturbance torque observer
and the speed trajectory command is given as follows: Proposed  |Linear control in (26) and (27)
o o omt 46 with torque and flux observer
0); = .—’/[ ——rfsin l ( )
T, 2n T, L .
, S
e B, o, 2nt\ 47) /;\_-ﬁ.w @,
O, =————"=C08 — yZ I . i 1000 [rpmvdiv]
, T T ) DOrs SOUIR IUURUPION PO caa i
Loe [P 2nt 48 i»—\ L\): . .
- /
@, = 217:—5‘/75]1](—7-}—] ( ) / '(;— /le " w: z
. . . . . P 3370 [rad/sec?/div)
where @, is the desired final speed and 7y is the time 50 [msec/div]
when the speed command reaches from zero to ¢ . () speed and computed acceleration responses
\ Spreeth contrables . . . lﬂ; w,

@, AT "
speed | Ttoems |99 [ Conratbpes || 0 [spare ] patont - \2//,\-4- e - 1000 frpnvdiv]
rommand | | contral I cxlesdation HJ v ertor [~ % X i b hd 1

I e pwar | TSl e
Motor states . /‘:\\ |
PN\ 10 2
3370 [rad/sec?/div]

Disturbaice nhservei s .
P ),‘———1 Ftux Bnkage estlmation e
‘7}./,] — d
A

—] Disturbance wrgue estimaton L

T

Fig.1 Overall block diagram for proposed control scheme

Figs. 2 (a) and (b) show the experimental results for
the method A under the nominal parameters and under the
inertia variations, respectively. The gains for the linear
contro} are selected as k, , =400, k_ , =80000, and

k,,=1000 so that the poles of the speed error dynamics

and the d-axis current error dynamics are determined as
—200+£200 and —1000, respectively. It is shown in Fig. 2
(a) that the speed and acceleration commands can be well
tracked. However, as can be shown in Fig. 2 (b), this
control scheme gives an undesirable dynamic performance
under the inertia variations. Also, the computed
acceleration z, shows the large transient errors. Figs. 3 (a)
and (b) show the experimental results for the method B.
Fig. 3 (a) shows the case for the inertia variations, and Fig.
3 (b) shows the case for both the flux linkage and inertia
variations, respectively. The speed responses in Fig. 3 (a)
show a good dynamic performance under the inertia
variations since the effective disturbance torque can be
estimated by the disturbance torque observer. However,
under the flux linkage variation, there exists an estimation
error in the disturbance torque. This yields a steady-state
error in the speed response as can be shown in Fig. 3 (b).
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(b) speed transient response and computed acceleration under J=2Jp
Fig.2 Experimental results for method A
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Fig.3 Experimental results of method B



As mentioned earlier, this steady-state speed error can be
removed by introducing the integral control and
disturbance torque observer. The integral gains are chosen
as k,,=2000000 and k , =500000. However, the speed

response generally shows a large transient with a fixed
integral gain. The speed responses for the method C are
shown in Fig. 4. Figs. 5 (a) and (b) shows the
experimental results of the proposed control scheme. Fig.
5 shows the speed transient response and parameter
estimation performance when the inertia is varied to 2J,
and A4, (A, —-A,) is -20% of its nominal value. Even

under both the flux linkage and inertia variations, the
speed response of the proposed control scheme is
unaffected by these variations and shows a good dynamic
performance. The current waveforms and computed
acceleration response are shown in Fig. 5 (b). It can be
shown that the d-axis current is well regulated to zero. The
computed acceleration z, using the estimated parameters
initially shows a large transient error due to the parameter
variations. However, as the disturbance torque and flux
linkage are estimated, z, is well controlled to the
acceleration command.
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. 1 [Nm/div)

N
o Aad/d 6.\: 2
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Fig. 4 Experimental results of method C (/=2Jo and Adp= 0.2 mo)
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(a) speed transient response and parameter estimation performance
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{iiaadl il L d bt 4
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(b) Current and acceleration waveforms
Fig. 5 Experimental results of the proposed control scheme under J=2J,
and A}»m= -0.2}\,mo

VI. CONCLUSIONS

A nonlinear speed control method for a PM
synchronous motor using a simple disturbance estimation
technique has been proposed for the design of the speed
tracking controller. By using this, a systematic design
approach for a speed controller can be accomplished
without considering a separate inner-loop current regulator.
Through the various comparative experimental results, it
is verified that the proposed control scheme yields a robust
control performance even under the presence of the
parameter variation and the external disturbances caused
by the inertia and load changes. Since only the two
reduced-order observers are used for the parameter
estimation, the observer designs are considerably simple
and the computational load of the controller for parameter
estimation is negligibly small as compared with the
adaptation technique in [3].. As a result, without requiring
a complex controller design such as the adaptation
technique an improved robustness against the parameter
variations can be obtained. Thus, a speed response gives a
desired dynamic performance and a zero steady-state error,
which is not affected by the load torque disturbance and
the variation of the motor and mechanical parameters. The
whole control system is realized using DSP TMS320C31
for a PM synchronous motor driven by a three-phase
voltage-fed PWM inverter.
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