• Title/Summary/Keyword: distribution coefficient($K_D$)

Search Result 231, Processing Time 0.025 seconds

Analysis of In-Cylinder Flow Characteristics of a High Speed D.I. Diesel Engines (고속 직접분사식 디젤 엔진의 실린더내 유동 해석)

  • Park, Sang-Chan;Ryu, Jae-Deok;Lee, Gi-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.9
    • /
    • pp.1276-1283
    • /
    • 2002
  • Recently, HSDI (High Speed Direct Injection) diesel engine has been spotlighted as a next generation engine because it has a good potential for high thermal efficiency and fuel economy. This study was carried out to investigate the in-cylinder flow characteristics generated in a 4-valve small diesel cylinder head with a tangential and helical intake port. The flow characteristics such as coefficient of flow rate(Cf), swirl ratio (Rs), and mass flow rate (ms) were measured in the steady flow test rig using the impulse swirl meter and the analysis of in-cylinder flow field was conducted by experiment using the PIV and calculation using the commercial CFD code. As the results from steady flow test indicate, the mass flow rate of the cylinder head with a short distance between the two intake ports is increased over 13% than that of the other head. However, the non-dimensional swirl ratio is decreased approximately 15%. From in-cylinder flow characteristics obtained by PIV and CFD calculation, we found that the swirl center was eccentric from the cylinder center and the velocity distribution became uniform near the TDC. In addition, the results of the calculation are good agreement with the experimental results.

NUMERICAL INVESTIGATION OF PLUME-INDUCED FLOW SEPARATION FOR A SPACE LAUNCH VEHICLE (우주발사체의 플룸에 따른 유동박리 현상에 대한 수치적 연구)

  • Ahn, S.J.;Hur, N.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.18 no.2
    • /
    • pp.66-71
    • /
    • 2013
  • In this paper, the supersonic flows around space launch vehicles have been numerically simulated by using a 3-D RANS flow solver. The focus of the study was made for investigating plume-induced flow separation(PIFS). For this purpose, a vertex-centered finite-volume method was utilized in conjunction with 2nd-order Roe's FDS to discretize the inviscid fluxes. The viscous fluxes were computed based on central differencing. The Spalart-Allmaras model was employed for the closure of turbulence. The Gauss-Seidel iteration was used for time integration. To validate the flow solver, calculation was made for the 0.04 scale model of the Saturn-5 launch vehicle at the supersonic flow condition without exhaust plume, and the predicted results were compared with the experimental data. Good agreements were obtained between the present results and the experiment for the surface pressure coefficient and the Mach number distribution inside the boundary layer. Additional calculations were made for the real scale of the Saturn-5 configuration with exhaust plume. The flow characteristics were analyzed, and the PIFS distances were validated by comparing with the flight data. The KSLV-1 is also simulated at the several altitude conditions. In case of the KSLV-1, PIFS was not observed at all conditions, and it is expected that PIFS is affected by the nozzle position.

The Analysis of Evergreen Tree Area Using UAV-based Vegetation Index (UAV 기반 식생지수를 활용한 상록수 분포면적 분석)

  • Lee, Geun-Sang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.1
    • /
    • pp.15-26
    • /
    • 2017
  • The decrease of green space according to the urbanization has caused many environmental problems as the destruction of habitat, air pollution, heat island effect. With interest growing in natural view recently, proper management of evergreen tree which is lived even the winter season has been on the rise importantly. This study analyzed the distribution area of evergreen tree using vegetation index based on unmanned aerial vehicle (UAV). Firstly, RGB and NIR+RG camera were loaded in fixed-wing UAV and image mosaic was achieved using GCPs based on Pix4d SW. And normalized differences vegetation index (NDVI) and soil adjusted vegetation index (SAVI) was calculated by band math function from acquired ortho mosaic image. validation points were applied to evaluate accuracy of the distribution of evergreen tree for each range value and analysis showed that kappa coefficient marked the highest as 0.822 and 0.816 respectively in "NDVI > 0.5" and "SAVI > 0.7". The area of evergreen tree in "NDVI > 0.5" and "SAVI > 0.7" was $11,824m^2$ and $15,648m^2$ respectively, that was ratio of 4.8% and 6.3% compared to total area. It was judged that UAV could supply the latest and high resolution information to vegetation works as urban environment, air pollution, climate change, and heat island effect.

Analytical Characteristics of GC/MS and HPLC according to the Concentration Distribution of PAHs (PAHs 농도 분포에 따른 GC/MS와 HPLC의 분석특성에 관한 연구)

  • Hong, Jwa-Ryung;Choi, Kwang-Min
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.3
    • /
    • pp.312-321
    • /
    • 2015
  • Objectives: The purpose of this study was to determine the best method to analyze PAHs at extremely low concentrations. To this end, 16 PAHswere analyzed simultaneously by GC/MS, HPLC/FLD and HPLC/UVD, and the analytical characteristics of HPLC and GC/MS were compared. Methods: This study was conducted by GC/MS and HPLC/FLD/UVD, and evaluated linearity, precision and detection limit. Standard solutions were prepared for 21 samples in the range of $0.00001{\sim}1.0{\mu}g/mL$ and the samples were divided into four groups. All samples were made in three sets and analysis was replicated seven times. Results: Sixteen PAHs could be simultaneously separated by HPLC and GC/MS, and the adequate equipment was HPLC/FLD. The retention times by HPLC were shorter than GC/MS, and HPLC had better separation for most PAHs than GC/MS. The peaks of naphthalene and naphthalene-D8 partially overlapped for GC/MS. HPLC/FLD had a 20-2000 times lower limit of detection than GC/MS and UVD. However FLD was not adequate for analyzing acenaphthylene because it has too low a fluorescence quantum yield to be detected. The precision of HPLC/FLD/UVD and GC/MS showed less than 20% at $0.001{\mu}g/mL$ PAHs and when the concentration was higher, the coefficient of variation was decreased. HPLC/FLD was better for the overall detection of limits. Conclusions: The results indicate that the HPLC/FLD method has good linear range, precision and a detection of limits from $0.00001{\sim}0.0001{\mu}g/mL$ for all 16 PAHs. This study contributes to providing useful data for analysis technology and can be applied to occupational exposure measurement for PAHs in workplaces.

The Effects of Soil Physical Properties on Root Distribution of Barley (토양의 물리적(物理的) 특성(特性)이 대맥의 뿌리 분포(分布)에 미치는 영향(影響))

  • Jo, In-Sang;Kim, Lee-Yul;Choi, Dae-Ung;Im, Jeong-Nam;Um, Ki-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.2
    • /
    • pp.126-130
    • /
    • 1983
  • This study was desinged to find out the effects of soil physical properties on root development of barley. Barley fields were selected in consideration of drainage class and texture. Soil hardness were measured at the field. Soil bulk density, air ratio and root distribution were obtained from the core samples. 1. The amount of roots were increased and the root were distributed deeper layers with better drainage class and finer soil texture. 2. Soil hardness was related to soil bulk density, and the regression coefficient was increased with clay content (Clay ; $r=0.837^{**}$, Clay loam ; $r=0.678^*$, and Sandy loam ; $r=0.654^*$). 3. There was a highly negative correlation ($r=-0,846^{**}$) between bulk density of subsoils and amount of roots and the root developments were markedly reduced in soil bulk density of $1.4g/cm^3$. 4. Bulk density of subsoils was decreased with worse soil drainage and finer texture. Especially, in case of clayey soil at imperfectly or moderately drained soils, the air phase was less than 20% and the barley growth was worse. 5. Root development were related to hardness in surface, bulk density and ok phase in 10-30cm layer, and air phase in 30-50cm layer.

  • PDF

Unsteady Mass Transfer Around Single Droplet Accompanied by Interfacial Extraction Reaction of Succinic Acid (숙신산 추출반응이 일어나는 단일 액적계에서의 비정상상태 물질 전달)

  • Jeon, Sangjun;Hong, Won Hi
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.1021-1026
    • /
    • 2012
  • The transient mass transfer in a single droplet system consisting of 1-octanol (continuous phase)/aqueous succinic acid solution (dispersed phase) was investigated in the presence of chemical reaction, which is acid/anion exchange reaction of succinic acid and tri-n-octylamine (TOA). This succinic acid extraction by TOA can be considered to occur at the interface between organic and aqueous phase, that is, heterogeneous reaction system. The basic properties of the system such as viscosity, density, distribution coefficient, terminal velocity of droplet, and diffusion coefficient were measured experimentally or calculated theoretically, and used for theoretical calculation of characteristic parameters of mass transfer later. The effects of succinic acid concentration on the terminal velocity was negligible in the existence of TOA, although the terminal velocity increases with succinic acid concentration in the absence of TOA. On the contrary, the terminal velocity decreases with TOA concentration. While droplets falls through organic phase, the trajectory of droplets is observed to oscillate around its vertical path. A mass trnasfer cell was prepared to monitor the mass transfer behavior in a single droplet and used to measure the mean concentration of succinic acid inside droplet. The results are expressed with dimensionless parameters. Under 50 g/L succinic acid condition, the system with 0.1 mol/kg TOA showed that the molar flux decreases in proportion to the decrease of concentration gradient, while in the case of 0.5 mol/kg TOA Sh increases rapidly with time indicating the molar flux of succinic acid decreases relatively slowly compared to the decrease in concentration gradient.

Study on the Application of 2D Video Disdrometer to Develope the Polarimetric Radar Data Simulator (이중편파레이더 시뮬레이터 개발을 위한 2차원 영상우적계 관측자료의 활용가능성 연구)

  • Kim, Hae-Lim;Park, Hye-Sook;Park, Hyang Suk;Park, Jong-Seo
    • Atmosphere
    • /
    • v.24 no.2
    • /
    • pp.173-188
    • /
    • 2014
  • The KMA has cooperated with the Oklahoma University in USA to develop a Polarimetric Radar Data (PRD) simulator to improve the microphysical processes in Korea Local Analysis and Prediction System (KLAPS), which is critical for the utilization of PRD into Numerical Weather Prediction (NWP) field. The simulator is like a tool to convert NWP data into PRD, so it enables us to compare NWP data with PRD directly. The simulator can simulate polarimetric radar variables such as reflectivity (Z), differential reflectivity ($Z_{DR}$), specific differential phase ($K_{DP}$), and cross-correlation coefficient (${\rho}_{hv}$) with input of the Drop Size Distribution (DSD) and scattering calculation of the hydrometeors. However, the simulator is being developed based on the foreign observation data, therefore the PRD simulator development reflecting rainfall characteristics of Korea is needed. This study analyzed a potential application of the 2-Dimension Video Disdrometer (2DVD) data by calculating the raindrop axis ratio according to the rain-types to reflect Korea's rainfall characteristics into scattering module in the simulator. The 2DVD instrument measures the precipitation DSD including the fall velocity and the shape of individual raindrops. We calculated raindrop axis ratio for stratiform, convective and mixed rainfall cases after checking the accuracy of 2DVD data, which usually represent the scattering characteristics of precipitation. The raindrop axis ratio obtained from 2DVD data are compared with those from foreign database in the simulator. The calculated the dual-polarimetric radar variables from the simulator using the obtained raindrop axis ratio are also compared with in situ dual-polarimetric observation data at Bislsan (BSL). 2DVD observation data show high accuracies in the range of 0.7~4.8% compared with in situ rain gauge data which represents 2DVD data are sufficient for the use to simulator. There are small differences of axis ratio in the diameter below 1~2 mm and above 4~5 mm, which are more obvious for bigger raindrops especially for a strong convective rainfall case. These differences of raindrop axis ratio between domestic and foreign rainfall data base suggest that the potential use of disdrometer observation can develop of a PRD simulated suitable to the Korea precipitation system.

An Experimental Study on the Variation of Vertical Dispersion within Boundary Layer with Surface Roughness (대기 경계층 연직방향 확산의 지면 거칠기에 따른 변화에 관한 실험적 연구)

  • 박옥현;윤창옥
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.3
    • /
    • pp.237-246
    • /
    • 2000
  • An experimental study has been carried out using a rotating water channel in order to investigate the effect of surface roughness on the vertical dispersion of plume within boundary layer. Dispersion measurements of tracers released from two sources with different height at neutral conditions over various rough terrain ranging from rural to urban have been performed. Various values of roughness length were simulated by combining of 4 stream velocities and 3 roughness element conditions. Dispersion measurements have also been made for rough terrain where high buildings are locally concentrated. Values of $\sigma$z increase with roughness and this tendency appears to apply both cases of with and without locally concentrated high buildings. The comparisons of the Bowne's nomogram on $\sigma$2 vs x relationship and the measurements of $\sigma$2 with roughness show good accordance in $\sigma$2 distribution at stability D class over rural, suburban and urban terrain. For constant roughness length the $\sigma$2 values of plumes from lower source height are smaller than those of plumes from higher source at short downwind distance, but this relationship becomes reverse as distance increases. Crossing appears to be made before about 2km. The value of constant I in McMullen's equation $\sigma$2=exp [I+J(In x) + K(In x)2] appears to increase with roughness length, however, the relationships between other constants and roughness have been confirmed. The values of $\sigma$2 for various downwind distances, estimated by using an equation which is employed in ISC (Industrial Source Complex) dispersion model for areas where high buildings are locally assembled, are in accordance with measurements from water channel experiments.

  • PDF

3-D Perspectives of Atmospheric Aerosol Optical Properties over Northeast Asia Using LIDAR on-board the CALIPSO satellite (CALIPSO위성 탑재 라이다를 이용한 동북아시아 지역의 대기 에어러솔 3차원 광학특성 분포)

  • Lee, Kwon-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.5
    • /
    • pp.559-570
    • /
    • 2014
  • Backscatter signal observed from the space-borne Light Detection And Ranging (LIDAR) system is providing unique 3-dimensional spatial distribution as well as temporal variations for atmospheric aerosols. In this study, the continuous observations for aerosol profiles were analyzed during a years of 2012 by using a Cloud-Aerosol LIDAR with Orthogonal Polarization (CALIOP), carried on the Cloud-Aerosol LIDAR and Infrared Pathfinder Satellite Observation (CALIPSO) satellite. The statistical analysis on the particulate extinction coefficient and depolarization ratio for each altitude was conducted according to time and space in order to estimate the variation of optical properties of aerosols over Northeast Asia ($E110^{\circ}-140^{\circ}$, $N20^{\circ}$ $-50^{\circ}$). The most frequent altitudes of aerosols are clearly identified and seasonal mean aerosol profiles vary with season. Since relatively high particle depolarization ratios (>0.5) are found during all seasons, it is considered that the non-spherical aerosols mixed with pollution are mainly exists over study area. This study forms initial regional 3-dimensional aerosol information, which will be extended and improved over time for estimation of aerosol climatology and event cases.

A New Approach on Adsorption and Transport of Cesium in Organic Matter-rich Soil and Groundwater Environments Changed by Wildfires (산불로 인해 변화하는 토양지하수 환경에서의 세슘 흡착 및 거동에 대한 새로운 고찰)

  • Bae, Hyojin;Choung, Sungwook;Jeong, Jina
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.1
    • /
    • pp.10-18
    • /
    • 2022
  • This study was conducted to investigate the effect of soil and groundwater environment changed by wildfire on cesium adsorption and transport. Soil samples (A, B) used in the study were collected from Gangwon-do, where wildfires frequently occur, and the adsorption and transport of cesium in the samples were evaluated through batch and column experiments. As a result of the batch adsorption experiments with various concentrations of cesium (CW ≈ 10~105 ㎍/L), the adsorption distribution coefficient (Kd) of cesium was higher in sample A for all observed concentrations. It means that the adsorption capacity of sample A was higher to that of sample B, which was also confirmed through the parameters of adsorption isotherm models (Freundlich and Langmuir model) applied to the experimental results. The fixed bed column experiments simulated the actual soil and groundwater environment, and they showed that cesium was retarded approximately 43 and 27 times than a nonreactive tracer in sample A and B, respectively. In particular, a significant retardation occurred in the sample A. Although sample A contains little clays, total organic carbon (TOC) contents were 3 times greater than sample B. These results imply that particulate organic matter caused by wildfire might influence the adsorption and transport of cesium in the organic matter-rich soil and groundwater environment.