• 제목/요약/키워드: distributed loading

검색결과 338건 처리시간 0.027초

Analytical study on the influence of distributed beam vertical loading on seismic response of frame structures

  • Mergos, P.E.;Kappos, A.J.
    • Earthquakes and Structures
    • /
    • 제5권2호
    • /
    • pp.239-259
    • /
    • 2013
  • Typically, beams that form part of structural systems are subjected to vertical distributed loading along their length. Distributed loading affects moment and shear distribution, and consequently spread of inelasticity, along the beam length. However, the finite element models developed so far for seismic analysis of frame structures either ignore the effect of vertical distributed loading on spread of inelasticity or consider it in an approximate manner. In this paper, a beam-type finite element is developed, which is capable of considering accurately the effect of uniform distributed loading on spreading of inelastic deformations along the beam length. The proposed model consists of two gradual spread inelasticity sub-elements accounting explicitly for inelastic flexural and shear response. Following this approach, the effect of distributed loading on spreading of inelastic flexural and shear deformations is properly taken into account. The finite element is implemented in the seismic analysis of plane frame structures with beam members controlled either by flexure or shear. It is shown that to obtain accurate results the influence of distributed beam loading on spreading of inelastic deformations should be taken into account in the inelastic seismic analysis of frame structures.

Ad-hoc 네트워크의 Throughput 향상을 위한 적응적 MCS 레벨 기반의 분산형 전력 제어 알고리즘 (Distributed Bit Loading and Power Control Algorithm to Increase System Throughput of Ad-hoc Network)

  • 김영범;왕우붕;장경희;윤창호;박종원;임용곤
    • 한국통신학회논문지
    • /
    • 제35권4A호
    • /
    • pp.315-321
    • /
    • 2010
  • Ad-hoc 네트워크에서는 전력을 제어할 기지국의 부재로 시스템의 성능을 최적화 시키는 중앙 전력 제어가 불가능하여, 각 노드들은 독립적이고 자동적인 방식으로 분산형 전력 제어 알고리즘을 수행해야 한다. 기존의 분산형 전력 제어 알고리즘은 수신 신호의 SINR (signal to interference and noise ratio)에 따라 MCS (modulation and coding scheme) 레벨을 변화 시키는 adaptive bit loading operation을 고려하지 않기 때문에, 전체 throughput 향상에 제한이 있다. 본 논문에서는 Ad-hoc 환경에서 전체 throughput 을 향상시키고, outage 확률을 낮추기 위해 MCS 레벨에 따라 adaptive bit loading operation을 고려한 분산형 전력 제어 알고리즘을 제안한다. 컴퓨터 모의실험 결과 매우 큰 throughput 향상과 outage 확률 감소의 성능 향상을 확인할 수 있다.

변분법에 의한 탄성지반 해석 (Application of Variational Method to the Elastic Foundation)

  • 이승현;한진태
    • 한국산학기술학회논문지
    • /
    • 제12권10호
    • /
    • pp.4642-4647
    • /
    • 2011
  • 평면 변형률 상태에 있는 탄성지반의 해를 변분법을 적용하여 유도하여 보았다. 변분법 적용시 종방향 변위분포 함수는 선형함수를 고려하였다. 탄성지반상에 작용하는 하중조건은 집중하중과 분포하중을 고려하였는데 집중하중 작용시 탄성지반의 종방향 변위분포양상은 하중 작용점에서 멀어질수록 변위가 급격하게 감소하는 양상을 나타내었다. 등분포하중 작용시 지표면 변위는 압축층 두께에 대한 재하폭의 반의 비(B/H)값이 클수록 하중재하부분 아래에서 보다 균등하게 발생하였다. 또한 하중재하부분을 벗어난 영역에서는 B/H 값이 커질수록 하중재하 모서리 부분으로부터 짧은 거리에서 변위가 0에 수렴하였다.

IV형의 골질로 재생된 골내에 식립된 원통형 임플란트의 유한요소법적 연구 (FINITE ELEMENT ANALYSIS OF CYLINDER TYPE IMPLANT PLACED INTO REGENERATED BONE WITH TYPE IV BONE QUALITY)

  • 김병옥;홍국선;김수관
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제30권4호
    • /
    • pp.331-338
    • /
    • 2004
  • Stress transfer to the surrounding tissues is one of the factors involved in the design of dental implants. Unfortunately, insufficient data are available for stress transfer within the regenerated bone surrounding dental implants. The purpose of this study was to investigate the concentration of stresses within the regenerated bone surrounding the implant using three-dimensional finite element stress analysis method. Stress magnitude and contours within the regenerated bone were calculated. The $3.75{\times}10-mm$ implant (3i, USA) was used for this study and was assumed to be 100% osseointegrated, and was placed in mandibular bone and restored with a cast gold crown. Using ANSYS software revision 6.0, a program was written to generate a model simulating a cylindrical block section of the mandible 20 mm in height and 10 mm in diameter. The present study used a fine grid model incorporating elements between 165,148 and 253,604 and nodal points between 31,616 and 48,877. This study was simulated loads of 200N at the central fossa (A), at the outside point of the central fossa with resin filling into screw hole (B), and at the buccal cusp (C), in a vertical and $30^{\circ}$ lateral loading, respectively. The results were as follows; 1. In case the regenerated bone (bone quality type IV) was surrounded by bone quality type I and II, stresses were increased from loading point A to C in vertical loading. And stresses according to the depth of regenerated bone were distributed along the implant evenly in loading point A, concentrated on the top of the cylindrical collar loading point B and C in vertical loading. And, In case the regenerated bone (bone quality type IV) was surrounded by bone quality type III, stresses were increase from loading point A to C in vertical loading. And stresses according to the depth of regenerated bone were distributed along the implant evenly in loading point A, B and C in vertical loading. 2. In case the regenerated bone (bone quality type IV) was surrounded by bone quality type I and II, stresses were decreased from loading point A to C in lateral loading. Stresses according to the depth of regenerated bone were concentrated on the top of the cylindrical collar in loading point A and B, distributed along the implant evenly in loading point C in lateral loading. And, In case the regenerated bone (bone quality type IV) was surrounded by bone quality type III, stresses were decreased from loading point A to C in lateral loading. And stresses according to the depth of regenerated bone were distributed along the implant evenly in loading point A, B and C in lateral loading. In summary, these data indicate that both bone quality surrounding the regenerated bone adjacent to implant fixture and load direction applied on the prosthesis could influence concentration of stress within the regenerated bone surrounding the cylindrical type implant fixture.

형상초기부정을 갖는 단층래티스돔의 좌굴내력에 관한 설비하중의 영향 (An Effect of Equipment-Loading on the Buckling Strength of Single-Layer Latticed Domes with Geometrical Imperfection)

  • 박지영;정환목;권영환
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.55-60
    • /
    • 1994
  • The paper is aimed at investigating the buckling strength of single-layer latticed domes with the geometrically initial imperfection under the uniformly distributed vertical-loading and the partially concentrated equipment-loading. The results show that the effect of initial imperfection on the buckling strength, if the magnitude of equipment-loading is small, is much more sensitive in domes of overall buckling than in domes of member buckling, but with increasing equipment-loading, it is very sensitive both in domes of overall buckling and of member buckling

  • PDF

설비하중을 고려하는 단층래티스돔의 좌굴특성에 관한 연구 (A Study on the Buckling Characteristics of Single-Layer Latticed Domes under Equipment-Loading)

  • 박지영;정환목;권영환
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1994년도 봄 학술발표회 논문집
    • /
    • pp.83-88
    • /
    • 1994
  • Recently, the equipments of the structure are increasing remarkably. It is very important to evaluate the stability of the domes under concentrated loading such as a large-scale illuminating, visional, and sound equipment. The paper is aimed at investigating the buckling characteristics of single-layer latticed domes with triangular network under the uniformly distributed vertical-loading and the partially concentrated equipment-loading. The results show that the effects of the equipment-loading on the buckling strength is much more sensitive in domes of overall buckling than in domes of member buckling.

  • PDF

라멘교 설계를 위한 HL 열차하중의 등치분포하중 (Equivalent Distributed Loads of HL Loading for Design of the Rahmen Bridges)

  • 진치섭;한상중;이홍주;김희성;조상제
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1993년도 봄 학술발표회 논문집
    • /
    • pp.207-212
    • /
    • 1993
  • Rail carrying structures in international routes as well as domestic ones shall be designed to carry HL(High Speed Railway live Load) loads, The loads shall be placed in the most unfavourable position for the part of the structure in question. In general, influence lines may be used to determine the maximum bending moments and maximum shear forces in the reinforced concrete rahmen bridge structures. In this study, based on the finite element analysis, equivalent distributed loads of HL loading for design of the rahmen bridges are deterimined.

  • PDF

임플란트와 지대주간 내측 연결을 갖는 임플란트 보철의 유한요소 응력분석 (FINITE ELEMENT STRESS ANALYSIS OF IMPLANT PROSTHESIS WITH INTERNAL CONNECTION BETWEEN THE IMPLANT AND THE ABUTMENT)

  • 안종관;계기성;정재헌
    • 대한치과보철학회지
    • /
    • 제42권4호
    • /
    • pp.356-372
    • /
    • 2004
  • Statement of problom: In the internal connection system the loading transfer mechanism within the inner surface of the implant and also the stress distribution occuring to the mandible can be changed according to the abutment form. Therefore it is thought to be imperative to study the difference of the stress distribution occuring at the mandible according to the abutment form. Purpose: The purpose of this study was to assess the loading distributing characteristics of 3 implant systems with internal connection under vertical and inclined loading using finite element analysis. Material and method: Three finite element models were designed according to the type of internal connection of ITI(model 1), Friadent(model 2), and Bicon(model 3) respectively. This study simulated loads of 200N in a vertical direction (A), a $15^{\circ}$ inward inclined direction (B), and a $30^{\circ}$ outward inclined direction (C). Result: The following results have been made based on this numeric simulations. 1. The greatest stress showed in the loading condition C of the inclined load with outside point from the centric cusp tip. 2. Without regard to the loading condition, the magnitudes of the stresses taken at the supporting bone, the implant fixture, and the abutment were greater in the order of model 2, model 1, and model 3. 3. Without regard to the loading condition, greater stress was concentrated at the cortical bone contacting the upper part of the implant fixture, and lower stress was taken at the cancellous bone. 4. The stress of the implant fixture was usually widely distributed along the inner surface of the implant fixture contacting the abutment post. 5. The stress distribution pattern of the abutment showed that the great stress was usually concentrated at the neck of the abutment and the abutment post, and the stress was also distributed toward the lower part of the abutment post in case of the loading condition B, C of the inclined load. 6. In case of the loading condition B, C of the inclined load, the maximum von Misess stress at the whole was taken at the implant fixture both in the model 1 and model 2, and at the abutment in the model 3. 7. The stress was inclined to be distributed from abutment post to fixture in case of the internal connection system. Conclusion: The internal connection system of the implant and the abutment connection methods, the stress-induced pattern at the supporting bone, the implant fixture, and the abutment according to the abutment connection form had differenence among them, and the stress distribution pattern usually had a widely distributed tendency along the inner surface of the implant fixture contacting the a butment post.

치조골 높이가 다른 2개 임플란트 금관의 고정연결 조건에 따른 응력분석 (Stress Analysis on the Splinted Conditions of the Two Implant Crowns with the Different Vertical Bone Level)

  • 전창식;정신영;강동완
    • 구강회복응용과학지
    • /
    • 제21권2호
    • /
    • pp.169-182
    • /
    • 2005
  • The purpose of this study was to compare the stress distribution around the surrounding bone according to the splinted and non-splinted conditions on the finite element models of the two implant crowns with the different vertical bone level. The finite element model was designed with the parallel placement of the two fixtures ($4.0mm{\times}11.5mm$) with reverse buttress thread on the mandibular 1st and 2nd molars. As the bone quality, the inner cancellous bone and the outer 2 mm cortical bone were designed, and the cortical and cancellous bone were assumed to be perfectly bonded to the implant fixture. The splinted model(Model 1) had 2 mm contact surface and the non-splinted model(Model 2) had $8{\mu}m$ gap between two implant crowns. Two group (Splinted and non-splinted) was loaded with 200 N magnitude in the vertical and oblique directions on the loading point position on the central position of the crown, the 2 mm and 4 mm buccal offset point from the central position. Von Mises stress value was recorded and compared in the fixture-bone interface in the bucco-lingual and mesio-distal sections. The results were as follows; 1. In the vertical loading condition of central position, the stress was distributed on the cortical bone and the cancellous bone around the thread of the fixture in the splinted and non-splinted models. In the oblique loading condition, the stress was concentrated toward the cortical bone of the fixture neck, and the neck portion of 2nd molar in the non-splinted model was concentrated higher than that of 1st molar compared to the splinted model. 2. In the 2 mm buccal offset position of the vertical loading compared to the central vertical loading, stress pattern was shifted from apical third portion of the fixture to upper third portion of that. In the oblique loading condition, the stress was distributed over the fixture-bone interface. 3. In the 4 mm buccal offset position of the vertical loading, stress pattern was concentrated on the cortical bone around the buccal side of the fixture thread and shifted from apical third portion of the fixture to upper third portion of that in the splinted and non-splinted models. In the oblique loading, stresses pattern was distributed to the outer position of the neck portion of the fixture thread on the mesio-distal section in the splinted and non-splinted models. Above the results, it was concluded that the direction of loading condition was a key factor to effect the pattern and magnitude of stress over the surrounding bone of the fixture under the vertical and oblique loading conditions, although the type with or without proximal contact did not effect to the stress distribution.

마주보는 양단이 자유 경계조건을 갖는 Lévy 판의 조화 응답 해석 (Harmonic Response Estimation Method on the Lévy Plate with Two Opposite Edges Having Free Boundary Conditions)

  • 박남규;서정민;전경락
    • 한국소음진동공학회논문집
    • /
    • 제23권11호
    • /
    • pp.943-950
    • /
    • 2013
  • This paper discusses a harmonic response estimation method on the L$\acute{e}$vy plate with two opposite edges simply supported and the other two edges having free boundary conditions. Since the equation of motion of the plate is not self-adjoint, the modes are not orthogonal to each other on the domain. Noting that the L$\acute{e}$vy plate can be expressed using one term sinusoidal function that is orthogonal to other sinusoidal functions, this paper suggested the calculation method that is equivalent to finding a least square error minimization solution of the finite number of algebraic equations. Example problems subjected to a distributed area loading and a distributed line loading are defined and their solutions are provided. The solutions are compared to those of the commercial code, ANSYS. According to the verification results, it is expected that the suggested method will be useful to predict the forced response on the L$\acute{e}$vy plate with the distributed area or line loading conditions.