• Title/Summary/Keyword: distance meter

Search Result 237, Processing Time 0.026 seconds

A Study on the Multipurpose Golf Putting Range Finder using IR Razer Sensor and Inertial Sensor (IR 레이저 센서 및 관성 센서를 이용한 다목적 골프 퍼팅 거리 측정기에 대한 연구)

  • Min-Seoung Shin;Dae-Woong Kang;Ki-Deok Kim;Ji-Hwan Kim;Chul-Sun Lee;Yun-Seok Ko
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.4
    • /
    • pp.669-676
    • /
    • 2023
  • In this paper, a multi-purpose golf putting range finder based on an IR razer sensor and an inertial sensor was designed and made. It was designed to measure distance and slope within a 50m outdoor measurement range for the main purpose of golf putting distance measurement, and at the same time, it is designed to measure temperature information that affects putting. In addition, the distance meter supports house maintenance work by providing length and horizontality measurement values within the indoor 80m measurement range, and provides safety from indoor or vehicle fires by providing indoor temperature measurement values to mobile phones through linkage with the web server. In order to evaluate the accuracy of the proposed method and its interworking performance with a smartphone, a prototype was produced and a web server was built, and the usefulness was confirmed by showing an acceptable error rate within 5% in repeated experiments.

A study on the flume for a current meter rating (유속계 검정용수로에 관한 연구)

  • 정준석;박정응
    • Water for future
    • /
    • v.6 no.2
    • /
    • pp.30-37
    • /
    • 1973
  • The coefficient of the current meter generally determined by the maker Its coefficient is subject to being changed with time. Therefore the coefficient of the current meter has to be checked up before it is ready to be used Such an inspection is termed a current meter rating The current meter equipped an electronic apparatus and all the others are to be rated in a rating flume. The price current meter which is most widely used for measuring flow velocities ranging between 0.3m/sec and 3.5m/sec has been used in this study. The length of the flume and the optimum range of the rating in the cross section are determined in the range of 20∼120cm deep, 50∼160cm wide of the flume. In this study, the 23 different kinds of the current meter rating enabled us to determine the constants a and b of the following equation. V=an+b(m/sec) where, n is number of revolution per second(n=N/T) V is velocity(v=D/T) The above constant can be determined by the least squares method and plotting, using the velocity(V=D/T) and the number of revolution per second(n=N/T) obtained from the running distance(D), time(T), the number of revolutin(N), and the running number(m). From the experiments the following conclusions are drawn: 1) The rating flume is large enough if the flume is 110∼120cm deep, and 40∼50m long. 2) The optimum depth for rating of a current meter is in the range of h=40∼50cm.

  • PDF

Radiation-training system with a custom survey-meter mock-up in a browser-based mixed reality environment

  • Hiroyuki Arakawa;Toshioh Fujibuchi;Kosuke Kaneko;Yoshihiro Okada;Toshiko Tomisawa
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2428-2435
    • /
    • 2024
  • Training for radiation protection and control requires a visual understanding of radiation, which cannot be perceived by the human senses. Trainees must also master the effective use of measuring instruments. Traditionally, such training has exposed trainees to radiation sources. Here, we present a novel e-training strategy that enables safe, exposure-free handling of a radiation measuring tool called a survey meter. Our mixed reality radiation-training system merges the physical world with a digital one. Collaborating with a mixed reality headset (HoloLens 2), this system constructs a mock-up of a survey meter in real-world space. The HoloLens 2 employs a browser-based application to visualize radiation and to simulate/share the use of the survey meter, including its physical movements. To provide a dynamic learning experience, the system adjusts the survey-meter mock-up readings according to the operator's movements, distance from the radiation source, the response time of survey meter, and shielding levels. Through this approach, we expect that trainees will acquire practical skills in interpreting survey-meter readings and gain a visual understanding of radiation in real-world situations.

The Effect of Pressure and Hose Length on the Travelling Distance of Particles in Power Sprayer (토출압력(吐出壓力) 및 호오스길이가 도달성(到達性)에 미치는 영향(影響)에 관(關)한 연구(硏究))

  • Kwon, Soon Hong;Choi, Kyu Hong
    • Journal of Biosystems Engineering
    • /
    • v.7 no.2
    • /
    • pp.30-35
    • /
    • 1983
  • To investigate the factors affecting the transportability of spray droplets, the maximum distance, the effective distance, the ratio of even distribution, and the diameters of particles were measured in accordance with the different pressure levels of power sprayer using 3 hole swath type nozzle, and the results are summerized as follows; 1. The distance of the most dense point from the nozzle was shortened by 0.5 meter with the 100-meter-long hose. The maximum reaching distances were reduced by 1.5 and 1.0 meters for the 13m/m and the 8.5 m/m hoses respectively, and the effective distance were reduced by 0.5 meter for both cases. 2. The effective distance can not be extended beyond 14 meters even if the length of hose is minimized at the rated pump pressure 28 kg/$cm^2$, it was 1 meter longer for 13m/m hose compared to the 8.5m/m one. 3. In case of 13m/m hose, the most dense point can be extended further by 0.5 meter increasing the pump pressure by 8 kg/$cm^2$, and the maximum distance and effective distance were increased by 2.0 and 0.5 meters respectively. There was no significant effect of pressure changes on the transportability in case of 8.5m/m hose. 4. Both the reduction of hose length and the increase of pump pressure influenced in large extent to the atomization effect of droplets. It was noticed that the diameter of droplet is related to the pump pressure and inside diameter of hose. 5. The pressure drop in 100-meter-long and l3m/m hose was 5~7kg/$cm^2$ at the pump pressure range of 25~33kg/$cm^2$, and it is an equivalent of 2% per 10 meter length of hose.

  • PDF

Measurement Technique for Soil Loss Estimation Using Laser Distance Meter in Sloped Upland (거리측정기를 이용한 경사지 밭의 토양유실량 평가)

  • Park, Chol-Soo;Jung, Yeong-Sang;Joo, Jin-Ho;Lee, Gye-Jun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.3
    • /
    • pp.127-133
    • /
    • 2005
  • The measurement technique using laser distometer to estimate soil erosion on sloped upland was assessed for its possibility for application. This technique was practiced in lysimeter installed in Chuncheon and Pyeongchang in 2001. The lysimeter installed at Chuncheon has 12% slope, 10 m slope length, 2 m width, and soil texture was sandy loam, while the lysimeter installed at Pyeongchang showed 23% slope, 15 m slope length, 5 m width, and sandy loam soil. Change of surface soil height was monitored using laser distance meter before and after rainy season on same spots. The Investigated periods in Chuncheon and Pyeongchang were from 22 June to 22 September and from July to October, respectively. Precipitation in Chuncheon and Pyeongchang in this period was 892.2 and 931.9 mm, respectively. Rainfall over 60% of annual precipitation was concentrated on July and August in Chuncheon and September and October in Pyeongchang, respectively. By monitoring the change of surface soil height using laser distance meter before and after rainy season, eroded soil surface in up-down fallow field in Chuncheon was 0.874 cm, while eroded soil surface in slant furrow field in Pyeongchang was 1.127 cm, which correspond to 79.5 and $98.0MT\;ha^{-1}$. Soil erosion increased as furrow length increased. Amounts of estimated soil loss using laser distance meter was 0.98-1.18 times higher compared to the estimated values through Iysimeter experiment, which implies possibility for application to monitor soil loss particularly in up-down and slant furrowed field. However, in the lysimeter with contoured tillage, amount of estimated soil loss using laser distance meter was approximately a half compared to that from lysimeter experiment, which implies inadequacy of distance meter application in contour- tillage field. The great soil loss difference between distance meter and lysimeter might be caused by disruption of some of the contoured furrows in lysimeter. The measurement technique using distometer in this study could be useful to estimate soil loss especially in up-down and slant-tillage fields.

Groundwater Flow Modeling and Suggestion for Pumping Rate Restriction around K-1 Oil Stockpiling Base with Geological Consideration (지질조건을 고려한 K-1 비축기지 주변의 지하수 모델링과 양수량 제한구역 제안)

  • Moon, Sang-Ho;Kim, Kue-Young;Ha, Kyoo-Chul;Kim, Young-Seog;Won, Chong-Ho;Lee, Jin-Yong
    • The Journal of Engineering Geology
    • /
    • v.20 no.2
    • /
    • pp.169-181
    • /
    • 2010
  • This study aimed at simulating several responses to stresses caused by the ground water level variations around the K-1 oil stockpile. For this simulation, we considered the characteristic hydrogeological condition including the special occurrence of long and thick acidic dyke, which is regarded as the main geological structure dominating the ground water flow system at this study area. We activated twenty-four imaginary wells which are located in northern and southern area around central K-1 site. Each neighboring distance is altogether 300 m and whole distance between K-1 site and remote wells is 1,200 m. Through the modeling, we operated the long-term and continuous pumping tests and finally categorized five zones based on maximum pumping rates for the imaginary wells; zone I within 300 meter distance from K-1 site with a pumping rate of 50 $m^3/day$; zone II between 300 to 600 meter distance from K-1 site with a pumping rate of 75 $m^3/day$; zone III between 600 to 900 meter distance from K-1 site with 150 $m^3/day$; zone IV between 900 to 1,200 meter distance from K-1 site with 300 $m^3/day$; and zone V of acidic dyke area. At zone V, especially because of their possibility of high transmissivity for groundwater flow, it is necessary to control and restrict groundwater discharge.

Analysis of Leakage Current Diagnosis According to Online and Offline Conditions (On-Line 및 Off-Line 상태에 따른 누설 전류 진단 분석)

  • Han, Kyung-Chul;Lee, Gyeong-Seop;Choi, Yong-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.4
    • /
    • pp.261-266
    • /
    • 2018
  • When the clamp meter approaches the electric path where current is flowing, leakage current can be measured at a distance from the electric current because the induced current increases as the magnitude of the current increases and approaches nearer to the electric path. Therefore, measurements were carried out from a distance to avoid this effect. In addition, the measured values differ depending on the location of the power line that penetrates the ZCT of the clamp meter, thus measurements were performed at a location where this effect was minimized. The fraction of compliant branch circuits, whose leakage current was lower than 1.00 mA, was found to be 69.0% out of the total of 439 branch circuits, while the percentage of compliant branch circuits having an insulation resistance higher than $0.20M{\Omega}$ was found to be 93.2%. The reason why the percentage of compliant branch circuits with low leakage current was low might be due to the inclusion of capacitive leakage current in the total measured leakage current.

Design and Performance Analysis of Zoom-FFT Based FMCW Radar Level Meter (Zoom-FFT 기반 FMCW 레이더 레벨미터의 설계 및 성능분석)

  • Sanjeewa, Nuwan;Kim, Won-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.2
    • /
    • pp.38-44
    • /
    • 2014
  • This paper presents design of a FMCW (Frequency Modulated Continuous Wave) level meter as well as simulation result of the designed system. The system is designed to measure maximum range of 20m since FMCW radar can be used for measuring short range distance. The distance is measured by analyzing the beat signal which is generated as result of mixing transmitting signal with the reflected received signal. The Fast Fourier Transform is applied to analyze the beat signal for calculating the displacement and Zoom FFT technique is used to minimize measurement error as well as increase the resolution of the measurement. The resolution of the measurement of the designed system in this paper is 2.2mm and bandwidth of 1.024GHz is used for simulation. Thus the simulation results are analyzed and compared in various conditions in order to get a comprehensive idea of frequency resolution and displacement resolution.

Temporal Reaction of House Price Based on the Distance from Subway Station since Its Operation - Focused on 10-year Experience after Opening of the Daejeon Urban Transit Line - (개통 이후의 지하철역 거리에 기반한 주택가격의 시간적 반응 - 개통 후 10년의 대전 도시철도를 중심으로 -)

  • Kang, Jae-Won;Sung, Hyungun
    • Journal of Korea Planning Association
    • /
    • v.54 no.2
    • /
    • pp.54-66
    • /
    • 2019
  • This study analyzed whether a subway accessibility impact on house price is constant since its operation over time or not. The study was approached specifically to answer two research questions. One is "Are there significant temporal variations in the relationship between subway accessibility and housing price transacted after its opening?" The other one is "How the pattern of its temporal variation in housing price is formed as a function of the distance from the nearest station?" The study area is the subway station areas in the Daejeon metropolitan city, South Korea. Its first subway line has started to be opened in 2006 with 12 stations and then opened its additional 10 stations in 2007. It can be more appropriate to observe its impacts of subway accessibility on housing price because it has only one transit line with more than 10-year reaction term to its operation. The study employed alternative models to estimate yearly variation of subway accessibility on house price for the station areas with 500-meter and 1-kilometer radius respectively. While the study originally considered both a hedonic price model with interaction terms of its access distance to yearly transacted housing and a time-variant random coefficient model, the former model was finally selected because it is better fitted. Based on our analysis results, the reaction of house price to its transit line had significant temporal variation over time after opening. In addition, the pattern in its variation from our analysis results indicates that its capitalization impact on house price is over-estimated in its first several years after the opening. In addition, its positive capitalization impact is more effective in the 1000-meter station area than in the 500-meter one.

A Study on Minimum Separation Distance for Aboveground High-pressure Natural Gas Pipelines (지상 고압 천연가스 배관의 최소 이격거리 기준에 관한 연구)

  • Lee, Jin-Han;Jo, Young-Do
    • Korean Chemical Engineering Research
    • /
    • v.57 no.2
    • /
    • pp.225-231
    • /
    • 2019
  • In Korea, the minimum separation distance between aboveground high-pressure natural gas pipeline and buildings is regulated by Korea gas safety (KGS) code. In this paper, The technical backgrounds for the revision of the KGS code related to the minimum separation distance was presented. A consequence-based approach was adopted to determine the minimum separation distance by a reasonable accident scenario, which was a jet fire caused by the rupture of one inch branch line attached the gas pipeline. Where, the higher thermal radiation flux threshold was selected for workers in industrial area than for people in non-industrial area, because the workers in industrial area were able to escape in a shorter time than the people in public. As result of consequence analysis for the accident scenario, we suggested the KGS code revision that the minimum separation distances between high-pressure natural gas pipeline installed above ground and buildings should be 30 meter in non-industrial area and 15 meter in industrial area. The revised code was accepted by the committee of the KGS code and now in effect.