• Title/Summary/Keyword: distance measure method

Search Result 743, Processing Time 0.036 seconds

Silhouette-Edge-Based Descriptor for Human Action Representation and Recognition

  • Odoyo, Wilfred O.;Choi, Jae-Ho;Moon, In-Kyu;Cho, Beom-Joon
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.2
    • /
    • pp.124-131
    • /
    • 2013
  • Extraction and representation of postures and/or gestures from human activities in videos have been a focus of research in this area of action recognition. With various applications cropping up from different fields, this paper seeks to improve the performance of these action recognition machines by proposing a shape-based silhouette-edge descriptor for the human body. Information entropy, a method to measure the randomness of a sequence of symbols, is used to aid the selection of vital key postures from video frames. Morphological operations are applied to extract and stack edges to uniquely represent different actions shape-wise. To classify an action from a new input video, a Hausdorff distance measure is applied between the gallery representations and the query images formed from the proposed procedure. The method is tested on known public databases for its validation. An effective method of human action annotation and description has been effectively achieved.

Automatic Clustering of Speech Data Using Modified MAP Adaptation Technique (수정된 MAP 적응 기법을 이용한 음성 데이터 자동 군집화)

  • Ban, Sung Min;Kang, Byung Ok;Kim, Hyung Soon
    • Phonetics and Speech Sciences
    • /
    • v.6 no.1
    • /
    • pp.77-83
    • /
    • 2014
  • This paper proposes a speaker and environment clustering method in order to overcome the degradation of the speech recognition performance caused by various noise and speaker characteristics. In this paper, instead of using the distance between Gaussian mixture model (GMM) weight vectors as in the Google's approach, the distance between the adapted mean vectors based on the modified maximum a posteriori (MAP) adaptation is used as a distance measure for vector quantization (VQ) clustering. According to our experiments on the simulation data generated by adding noise to clean speech, the proposed clustering method yields error rate reduction of 10.6% compared with baseline speaker-independent (SI) model, which is slightly better performance than the Google's approach.

Geodesic Clustering for Covariance Matrices

  • Lee, Haesung;Ahn, Hyun-Jung;Kim, Kwang-Rae;Kim, Peter T.;Koo, Ja-Yong
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.4
    • /
    • pp.321-331
    • /
    • 2015
  • The K-means clustering algorithm is a popular and widely used method for clustering. For covariance matrices, we consider a geodesic clustering algorithm based on the K-means clustering framework in consideration of symmetric positive definite matrices as a Riemannian (non-Euclidean) manifold. This paper considers a geodesic clustering algorithm for data consisting of symmetric positive definite (SPD) matrices, utilizing the Riemannian geometric structure for SPD matrices and the idea of a K-means clustering algorithm. A K-means clustering algorithm is divided into two main steps for which we need a dissimilarity measure between two matrix data points and a way of computing centroids for observations in clusters. In order to use the Riemannian structure, we adopt the geodesic distance and the intrinsic mean for symmetric positive definite matrices. We demonstrate our proposed method through simulations as well as application to real financial data.

Development of Human Following Method of Mobile Robot Using TRT Pose (TRT Pose를 이용한 모바일 로봇의 사람 추종 기법)

  • Choi, Jun-Hyeon;Joo, Kyeong-Jin;Yun, Sang-Seok;Kim, Jong-Wook
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.6
    • /
    • pp.281-287
    • /
    • 2020
  • In this paper, we propose a method for estimating a walking direction by which a mobile robots follows a person using TRT (Tensor RT) pose, which is motion recognition based on deep learning. Mobile robots can measure individual movements by recognizing key points on the person's pelvis and determine the direction in which the person tries to move. Using these information and the distance between robot and human, the mobile robot can follow the person stably keeping a safe distance from people. The TRT Pose only extracts key point information to prevent privacy issues while a camera in the mobile robot records video. To validate the proposed technology, experiment is carried out successfully where human walks away or toward the mobile robot in zigzag form and the robot continuously follows human with prescribed distance.

Fault Diagnosis of Power Transformer by FCM and Euclidean Based Distance Measure (FCM과 유클리디언 기반 거리유사도에 의한 전력용 변압기의 고장진단)

  • Lee, Dae-Jong;Lee, Jong-Pil;Ji, Pyeong-Shik;Lim, Jae-Yoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.1007-1016
    • /
    • 2007
  • In power system, substation facilities have become too complex and larger according to an extended power system. Also, customers require the high quality of electrical power system. However, some facilities become old and often break down unexpectedly. The unexpected failure may cause a break in power system and loss of profits. Therefore it is important to prevent abrupt faults by monitoring the condition of power systems. Among the various power facilities, power transformers play an important role in the transmission and distribution systems. In this research, we develop intelligent diagnosis technique for predicting faults of power transformer by FCM(Fuzzy c-means) and Euclidean based distance measure. The proposed technique make it possible to measures the possibility and degree of aging as well as the faults occurred in transformer. To demonstrate the validity of proposed method, various experiments are performed and their results are presented.

Support Vector Machine based Cluster Merging (Support Vector Machines 기반의 클러스터 결합 기법)

  • Choi, Byung-In;Rhee, Frank Chung-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.369-374
    • /
    • 2004
  • A cluster merging algorithm that merges convex clusters resulted by the Fuzzy Convex Clustering(FCC) method into non-convex clusters was proposed. This was achieved by proposing a fast and reliable distance measure between two convex clusters using Support Vector Machines(SVM) to improve accuracy and speed over other existing conventional methods. In doing so, it was possible to reduce cluster number without losing its representation of the data. In this paper, results for several data sets are given to show the validity of our distance measure and algorithm.

Error Correction of Laser Interferometer Using Capacitive Sensor (정전용량센서를 이용한 레이저 간섭계 오차보정)

  • Kim, Jae-Cheon;Seo, Suk-Hyun;Jeon, Jae-Wook;Park, Ki-Heon;You, Kwan-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.342-344
    • /
    • 2006
  • During last years, large investments have been directed to development and research of nano-technological products like semiconductor, display panel, optic-fiber communication components, life technology, and ultra-precision components. All quantitative measurements at nanometre scale should guarantees accurate results and high quality. Laser interferometer is one of most famous nanometre scale devices to be able to measure metre-scale distance with nanometre scale resolution, but it is easily affected by various error causes like geometrical, instrumental and environmental factor. On the other side, capacitive sensor is robust to above error factors, but it is able to measure relatively shorter distance, under $100{\mu}m$, than laser interferometer. New error correction method for laser interferometry using capacitive sensor will be introduced in this paper.

  • PDF

Adaptive Euclidean Distance Measure Method for Numeric Data Distribution (수치 데이터 분포에 적응적 유클리드 거리 측정 기법)

  • Choi, You-Hwan;Joo, Bum-Joon;Jung, Sung-Won
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06c
    • /
    • pp.67-69
    • /
    • 2011
  • 데이터의 군집 분석에서 두 개의 서로 다른 데이터에 대한 유사도(거리)를 어떻게 정의하는가는 매우 중요한 문제이다. 수치속성에 대한 거리 측정 방법에는 다양한 기법이 존재하지만 각 속성의 크기와 범위가 서로 크게 다를 경우 이들을 동일한 인자로 여기고 거리 측정을 하게 되면 논리적인 오류를 범할 수 있다. 기존의 군집 분석 연구에서 사용된 거리 측정 기법은 데이터의 정규화 과정을 통해 이 문제를 해결하려고 노력하지만 일반적인 정규화는 이상치의 존재나 데이터의 편중된 분포 등의 이유로 속성별 거리가 왜곡될 수 있다. 본 논문은 이러한 문제점을 해결하기 위해 정규화된 데이터에서 각 속성의 비중을 고려한 적응적 유클리드 거리 측정 기법(AEDM: Adaptive Euclidean Distance Measure)을 제안한다. AEDM은 유클리드 거리를 기반으로 정규화 된 데이터의 형태에 따라 가중치를 부여하여 데이터의 분포에 관계없이 각 속성간의 거리를 충분히 반영하기 때문에 더욱 정확한 군집 분석을 가능하게 한다.

A Performance Analysis of the Face Recognition Based on PCA/LDA on Distance Measures (거리 척도에 따른 PCA/LDA기반의 얼굴 인식 성능 분석)

  • Song Young-Jun;Kim Young-Gil;Ahn Jae-Hyeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.3
    • /
    • pp.249-254
    • /
    • 2005
  • In this paper, we analysis the recognition performance of PCA/LDA by distance measures. We are adapt to ORL face database with the fourteen distance measures. In case of PCA, it has high performance for the manhattan distance and the weighted SSE distance to face recognition, In case of PCA/LDA, it has high performance for the angle-based distance and the modified SSE distance. Also, PCA/LDA is better than PCA for reduction of dimension. Therefore, the PCA/LDA method and the angle-based distance have the most performance and a few dimension for face recognition with ORL face database.

  • PDF

An Improved Object Detection Method using Hausdorff Distance based on Elastic Deformation Energy (탄성변형 에너지 기반 Hausdorff 거리를 이용한 개선된 객체검출)

  • Won, Bo-Whan;Koo, Ja-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.2 s.46
    • /
    • pp.71-76
    • /
    • 2007
  • Object detection process which makes decision on the existence of meaningful objects in a given image is a crucial part of image recognition in computer vision system. Hausdorff distance metric has been used in object detection and shows good results in applications such as face recognition. It defines the dissimilarity between two sets of points and is used to find the object that is most similar to the given model. This paper proposes a Hausdorff distance based detection method that uses directional information of points to improve detection accuracy when the sets of points are derived from edge extraction as is in usual cases. In this method, elastic energy needed to make two directional points coincident is used as a measure of similarity.

  • PDF