Coprecipitates of ibuprofen (IPF)-sodium deoxycholate (DC-Na) were prepared at various mixing ratios of IPF to DC-Na. X-ray diffraction measurments indicated that IPF in 1:3 and 1:5 IPF-DC-Na coprecipitate did not exist in the crystal form, however in the 1:8 coprecipitate, IPF remained its crystalline form. The dissolution rate was tested in pH 7.4 phosphate buffer by the paddle method of dissolution test of KP V. The dissolution rates of IPF from 1:1, 1:3, 1:5, 1:8 and 1:10(w/w) IPF-DC-Na coprecipitates and physical mixtures were compared with that of IPF alone. It was found that the dissolution rate of 1:5(w/w) coprecipitate was greater than that of pure IPF, coprecipitate and physical mixture at any other ratios of the two components. The concentration of IPF released from the IPF-DC-Na coprecipitates reached a plateau within 10 min, and thereafter gradually decreased indicating that IPF released from the coprecipitate was recrystallized due to the transient supersaturation.
In order to increase the dissolution characteristics of relatively water-insoluble metoclopramide (MCP), coprecipitates of MCP with polyvinylpyrrolidone (PVP), polyethylene glycol (PEG) 1000, 4000 or 6000 were prepared in various drug to polymer ratios. The dissolution rate of MCP-PVP coprecipitate was greater than those of MCP alone, MCP-PVP physical mixture and MCP-PEG coprecipitates. The dissolution rate of MCP-PEG 6000 coprecipitate was greater than those of MCP-PEG 1000 and MCP-PEG 4000 coprecipitates. The dissolution half-lives $(T_{50%})$ for MCP alone and 1:5 (w/w) MCP-PEG 6000 coprecipitate were determined by the log-probit method at $37^{\circ}C$ and found to be 4.17 and 0.98 min, respectively.
Dissolution characteristics of flurbiprofen solvent deposited on ${\alpha}-cyclodextrin$, ${\beta}-cyclodextrin$, lactose and corn starch were studied to evaluate the pharmaceutical aspects of solvent deposition method where drug was solvent deposited on the surface of excipients. In a solvent deposition system, the drug to excipient ratio and kind of excipient affect much on dissolution rates of flurbiprofen. The solvent deposition system formation was confirmed by scanning electron microscope. By increasing the amounts of matrix, it was possible to enhance the dissolution rate of flurbiprofen solvent deposition system. The amount of flurbiprofen dissolved from ${\beta}-cyclodextrin$ deposition system (1:10) at 60 minutes was enhanced 6.5 times in water and 28 times in simulated gastric juice compared with flurbiprofen alone. Flurbiprofen solvent deposited system (1:10) enhanced dissolution rate greater than inclusion complex and dispersion system.
$CO_{2}$ ocean sequestration is one of the promising options to reduce $CO_{2}$ concentration in the atmosphere because the ocean has vast capacity for $CO_{2}$ absorption. Therefore, in the present investigation, calculations for solubility and dissolution behavior of liquid $CO_{2}$ droplets released at 1000 m and 1500 m deep in the ocean from a moving ship and a fixed pipeline have been carried out in order to estimate the $CO_{2}$ dissolution characteristics in the ocean. The results show liquid $CO_{2}$ becomes bubble at around 500 m in depth, and the solubility of seawater is about $5{\%}$ less than of pure water. Also, it is shown that the injection of liquid from a moving ship is a more effective method for dissolution than from a fixed pipeline, and the presence of hydrate on liquid $CO_{2}$ acts as a resistant layer in dissolving liquid $CO_{2}$.
Kim, Ki-Man;Kim, Hyun-Soo;Kim, Seung-In;Kim, Young-Il
Journal of Pharmaceutical Investigation
/
v.18
no.1
/
pp.23-30
/
1988
The sustained-release micropellets containing rifampicin were prepared by spray congealing micropelleting technique using gelatin as the embedding matrix, and hardened by treating with the formalin-isopropanol mixture. Dissolution of rifampicin from micropellets was significantly retarded, and greatly dependent on formalin concentration, hardening time and pH of the dissolution medium. It was found that this prolongation was more distinguished in pH 1.2 dissolution medium rather than pH 7.4, which might be attributed to the swelling characteristics of gelatin used in the dissolution medium. In-vitro dissolution kinetics indicated that the drug release followed the first-order process.
Erythromycin was formulated as enteric-coated pellets in order to reduce degradation in stomach and gastromtestmal irritation, and to maximize the absorption in intestine followmg its oral administration. Core pellets were prepared using fluid-bed granulator with two different methods (powder layering and solvent spraying) and enteric-coated with two different coating polymers (HPMCP and Eudragit E30D). Physical characteristics md dissolution rates of core pellets and enteric-coated pellets were evaluated to optimize the formulation. Powder layering method resulted in shorter initial dissolution time than solvent spraying method, but physicochmical properties of the product were worse than solvent spraying method with respect to hardness, ftiability and density. The dissolution rate of the drug was increased with the addition of surfactants, showing concentration-dependence. The scanning electron microscopic observation of pellets revealed significant differences on the surface appearances prepared with solvent spraying method. The core pellet made with powder layering method had crystals on the surface, which resulted in poor physical properties of the pellets. The dissolution profiles of erythromycin pellets coated with HPMCP or Eudragit L30D were close to that of commercially available erythromycin enteric-coated product.
To increase the dissolution rate of practically insoluble biphenyl dimethyl dicarboxylate (DDB), various solid dispersions were prepared with water soluble carriers, such as povidone (PVP K-30), poloxamer 407, sodium deoxycholate (SDC) and polyethylene glycol (PEG) 6000, at drug to carrier ratios of 1:3, 1:5 and 1:10 (w/w) by solvent or fusion method. Dissolution test was performed by the paddle method. The dissolution rate of DDB tablets (25 mg) on market was found to be very low (11.44, 9.02 and 6.42% at pH 1.2, 4.0 and 6.5 after 120 min, respectively). However, dissolution rates of DDB from various solid dispersions were very fast and reached supersaturation within 10 min. DDB-PEG 6000 solid dispersion appeared to be better in enhancing the in vitro dissolution rate than others. Furthermore, the incorporation of DDB and phosphatidylcholine (PC) into ${\beta}-cyclodextrin$ at ratios of 1:2:20, 1:5:20 and 1:10:20 resulted in a 4.9-, 11.2- and 19.6-fold increase in DDB dissolution after 120 min as compared with the pure drug, respectively. This might be attributed to the formation of lipid vesicles which entrapped a certain concentration of DDB during dissolution. On the other hand, the permeation of DDB through rabbit duodenal mucosa was examined using some enhancers such as SDC, sod. glycocholate (SGC) and glycyrrhizic acid ammonium salt (GAA). Only trace amounts of DDB were found to permeate through deuodenal mucosa in the absence of enhancer. SDC was found to markedly decrease the permeation flux of DDB, however, SGC and GAA (5 mM) enhanced the flux of DDB 1.6 and 2.4 times higher as compared with no additive, respectively.
The objective of this study was to improve the extent of drug release as well as the dissolution rate of TD49, a novel algicidal agent, via the preparation of solid dispersion (SD). Among the various carriers tested, $Solutol^{(R)}$ HS15 was most effective to enhance the solubility of TD49. Subsequently, SDs of TD49 were prepared by using $Solutol^{(R)}$ HS15 and their solubility, dissolution characteristics and drug crystallinity were examined at various drug-carrier ratios. Solubili ty of TD49 was increased significantly in accordance with increasing the ratio of $Solutol^{(R)}$ HS15 in SDs. Compared to untreated powders and physical mixtures (PMs), SDs facilitated the faster and greater extent of drug release in water. Particularly, SD having the drug-carrier ratio of 1:20 exhibited approximately 90% of drug release within 1 hr. Differential scanning calorimetry (DSC) thermograms and X-ray diffraction (XRD) patterns suggested that SDs might enhance the dissolution of TD49 by changing the drug crystallinity to an amorphous form in addition to the increased solubilization of drug in the presence of $Solutol^{(R)}$ HS15. In conclusion, SD using $Solutol^{(R)}$ HS15 appeared to be effective to improve the extent of drug release and the dissolution rate of poorly water soluble TD49.
Coprecipitates of chlorpropamide (CPA)-sodium deoxycholate (DC-Na) were prepared at various ratios of CPA to the DC-Na. The X-ray diffraction and DSC measurements indicated that CPA in 1:1 and 1:3 w/w CPA-DC-Na coprecipitates did not exist in amorphous form, but the others were amorphous. The dissolution rate of CPA from the CPA-DC-Na coprecipitates increased in distilled water and KP V 2nd disintegration test fluid (pH 6.8), but decreased extremely in KP V 1st disintegration test fluid (pH 1.2). The dissolution rates of CPA-DC-Na coprecipitates were compared with those of CPA alone and CPA-DC-Na physical mixtures. Especially, it was found that the dissolution rate of CPA markedly increased in the case of 1:5 CPA-DC-Na coprecipitate. The concentration of CPA dissolved from CPA-DC-Na coprecipitate reached a plateau within 5-10 min, and thereafter gradually decreased, indicating that CPA released from the coprecipitate was recrystallized.
Dissolution characteristics of magnesite ore in hydrochloric acid solution and removal of impurity were investigated. The dissolution yield increased with increasing temperature and with decreasing particle size. The optimum conditions for dissolution were found to be reaction period of 120 min, reaction temperature of $80^{\circ}C$ and mean particle size of 100. Under optimal dissolution condition the extraction of Mg was 98%. It was found that most of Si and Al exist in the residue, and they can be removed by filtering. Dissolved impurity ions were precipitated as metal hydroxides by pH adjustment. Polymers were used as coagulants for metal hydroxides and the suitable coagulant dosage was 1mg/100ml of non-ionic polymer.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.