DOI QR코드

DOI QR Code

Improved Dissolution of Poorly Water Soluble TD49, a Novel Algicidal Agent, via the Preparation of Solid Dispersion

  • Lee, Hyoung-Kyu (BK21 Project team, College of Pharmacy, Chosun University) ;
  • Cho, Hoon (Dept. of Polymer Science & Engineering, Chosun University) ;
  • Han, Hyo-Kyung (BK21 Project team, College of Pharmacy, Chosun University)
  • Received : 2010.05.10
  • Accepted : 2010.05.28
  • Published : 2010.06.20

Abstract

The objective of this study was to improve the extent of drug release as well as the dissolution rate of TD49, a novel algicidal agent, via the preparation of solid dispersion (SD). Among the various carriers tested, $Solutol^{(R)}$ HS15 was most effective to enhance the solubility of TD49. Subsequently, SDs of TD49 were prepared by using $Solutol^{(R)}$ HS15 and their solubility, dissolution characteristics and drug crystallinity were examined at various drug-carrier ratios. Solubili ty of TD49 was increased significantly in accordance with increasing the ratio of $Solutol^{(R)}$ HS15 in SDs. Compared to untreated powders and physical mixtures (PMs), SDs facilitated the faster and greater extent of drug release in water. Particularly, SD having the drug-carrier ratio of 1:20 exhibited approximately 90% of drug release within 1 hr. Differential scanning calorimetry (DSC) thermograms and X-ray diffraction (XRD) patterns suggested that SDs might enhance the dissolution of TD49 by changing the drug crystallinity to an amorphous form in addition to the increased solubilization of drug in the presence of $Solutol^{(R)}$ HS15. In conclusion, SD using $Solutol^{(R)}$ HS15 appeared to be effective to improve the extent of drug release and the dissolution rate of poorly water soluble TD49.

Keywords

References

  1. Ahuja, N., Katare, O.P., Singh, B., 2007. Studies on dissolution enhancement and mathematical modeling of drug release of a poorly water-soluble drug using water-soluble carriers. Eur. J. Pharm. Biopharm. 65, 26-38. https://doi.org/10.1016/j.ejpb.2006.07.007
  2. Anderson, D.M., 2009. Approaches to monitoring, control and management of harmful algal blooms (HABs). Ocean. Coast. Manag. 52, 342-347. https://doi.org/10.1016/j.ocecoaman.2009.04.006
  3. Anderson, D. M., 1997. Turning back the harmful red tide. Nature 388, 513-514. https://doi.org/10.1038/41415
  4. Buszello, K., Harnisch, S., Müller, R. H., Müller, B. W., 2000. The influence of alkali fatty acids on the properties and the stability of parenteral O/W emulsions modified with Solutol HS $15^{\circledR}$. Eur. J. Pharm. Biopharm. 49, 143-149. https://doi.org/10.1016/S0939-6411(99)00081-8
  5. Chutimaworapan, S., Ritthidej, G. C., Yonemochi, E., Oguchi, T., Yamamoto, K., 2000. Effect of water-soluble carriers on dissolution characteristics of nifedipine solid dispersions. Drug Dev. Ind. Pharm. 26, 1141-1150. https://doi.org/10.1081/DDC-100100985
  6. Erdner, D.L., Dyble, J., Parsons, M.L., Stevens, R.C., Hubbard, K.A., Wrabel, M.L., Moore, S.K., Lefebvre, K.A., Anderson, D.M., Bienfang, P., Bidigare, R.R., Parker, M.S., Moeller, P., Brand, L.E., Trainer, V.L., 2008. Centers for Oceans and Human Health: a unified approach to the challenge of harmful algal blooms. Environ. Health 7 (Suppl 2):S2, 1-17. https://doi.org/10.1186/1476-069X-7-1
  7. Jancula, D., Drabkova, M., Cerny, J., Karaskova, M., Korínkova, R., Rakusan, J., Marsalek, B., 2008. Algicidal activity of phthalocyanines--screening of 31 compounds. Environ. Toxicol. 23, 218-223. https://doi.org/10.1002/tox.20324
  8. Kim, Y. M., Gajanan, G., Cho, H., Jin, E. S., 2009. Screening of various algicidal compounds against red tide microalgae; Heterosigma akashiwo, Chattonella marina and Cochlodinium polykrikoides. Abstracts, 2009 International Symposium & Annual meeting, The Korean Society for Microbiology and Biothechnology, pp.315.
  9. Lee, B.K., Katano, T., Kitamura, S., Oh, M.J., Han, M.S., 2008. Monitoring of algicidal bacterium, Alteromonas sp. strain A14 in its application to natural Cochlodinium polykrikoides blooming seawater using fluorescence in situ hybridization. J. Microbiol. 46, 274-82. https://doi.org/10.1007/s12275-007-0238-9
  10. Meepagala, K.M., Schrader, K.K., Wedge, D.E., Duke S.O., 2005. Algicidal and antifungal compounds from the roots of Ruta graveolens and synthesis of their analogs. Phytochemistry 66, 2689-2695. https://doi.org/10.1016/j.phytochem.2005.09.019
  11. Nagasaki, K., Yamaguchi, M., 1997. Isolation of a virus infectious to the harmful bloom causing microalga. Heterosigma akashiwo. Aquat. Microb. Ecol. 13, 135-140. https://doi.org/10.3354/ame013135
  12. Nor, Y. M., 1987. Ecotoxicity of copper to aquatic biota: a review. Environ. Res. 43, 274-282. https://doi.org/10.1016/S0013-9351(87)80078-6
  13. Rajebahadur, M., Zia, H., Lee, C., 2006. Mechanistic study of solubility enhancement of nifedipine using vitamin E TPGS or solutol HS-15. Drug Delivery 13, 201-206. https://doi.org/10.1080/10717540500316094
  14. Schrader, K.K., Nanayakkara, N.P., Tucker, C.S., Rimando, A. M., Ganzera, M., Schaneberg, B.T., 2003. Novel derivatives of 9,10-anthraquinone are selective algicides against the mustyodor cyanobacterium Oscillatoria perornata. Appl. Environ. Microbiol. 69, 5319-5327. https://doi.org/10.1128/AEM.69.9.5319-5327.2003
  15. Sellner, K.G., Doucette, G.J., Kirkpatrick, G.J., 2003. Harmful algal blooms: causes, impacts and detection. J. Ind. Microbiol. Biotechnol. 30, 383-406. https://doi.org/10.1007/s10295-003-0074-9
  16. Sengco, M.R., Anderson, D.M., 2004. Controlling harmful algal blooms through clay flocculation. J. Eukaryot. Microbiol. 51, 169-172. https://doi.org/10.1111/j.1550-7408.2004.tb00541.x
  17. Tucker, C.S., 2000. Off-flavor problems in aquaculture. Rev. Fish. Sci. 8, 45-88. https://doi.org/10.1080/10641260091129170
  18. Van Dolah, F.M., 2000. Marine algal toxins: origins, health effects, and their increased occurrence. Environ. Health. Perspect. 108 (Suppl 1), 133-141. https://doi.org/10.2307/3454638
  19. Van Hullebusch, E., Deluchat, V., Chazal, P., Baudu, M., 2002. Environmental impact of two successive chemical treatments in a small shallow eutrophied lake. I: Case of copper sulfate. Environ. Pollut. 120, 627-634. https://doi.org/10.1016/S0269-7491(02)00191-4
  20. Vasconcelos, T., Sarmento, B., Costa, P., 2007. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov. Today 12, 1068-1075. https://doi.org/10.1016/j.drudis.2007.09.005
  21. Wade, A., Weller, P. J., 1994. Handbook of Pharmaceutical Excipients (2nd edition), Pharmaceutical Press, London.
  22. Zingone, A., Enevoldsen, H.O., 2000. The diversity of harmful algal blooms: a challenge for science and management. Ocean. Coast. Manag. 43, 725-748. https://doi.org/10.1016/S0964-5691(00)00056-9

Cited by

  1. Algicidal effects on Heterosigma akashiwo and Chattonella marina (Raphidophyceae), and toxic effects on natural plankton assemblages by a thiazolidinedione derivative TD49 in a microcosm vol.25, pp.4, 2013, https://doi.org/10.1007/s10811-012-9905-2
  2. Algicidal activity of the thiazolidinedione derivative TD49 against the harmful dinoflagellate Heterocapsa circularisquama in a mesocosm enclosure vol.25, pp.5, 2013, https://doi.org/10.1007/s10811-012-9953-7
  3. Effects of the algicide, thiazolidinedione derivative TD49, on microbial communities in a mesocosm experiment vol.187, pp.4, 2015, https://doi.org/10.1007/s10661-015-4367-z