• Title/Summary/Keyword: dissipative structure

Search Result 44, Processing Time 0.026 seconds

Inelastic Seismic Response of Asymmetric-Plan Self-Centering Energy Dissipative Braced Frames (비정형 셀프센터링 가새골조의 비탄성 지진응답)

  • Kim, Jin-Koo;Christopoulos, C.;Choi, Hyun-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.35-44
    • /
    • 2008
  • A self-centering energy-dissipative(SCED) bracing system has recently been developed as a new seismic force resistant bracing system. The advantage of the SCED brace system is that, unlike other comparable advanced bracing systems that dissipate energy such as the buckling restrained brace(BRB) system, it has a self-centering capability that reduces or eliminates residual building deformations after major seismic events. In order to investigate the effects of torsion on the SCED brace and BRB systems, nonlinear time history analyses were used to compare the responses of 3D model structures with three different amounts of frame eccentricity. The results of the analysis showed that the interstory drifts of SCED braced frames are more uniform than those of BRB frames, without regard to irregularity. The residual drift and residual rotation responses tended to decrease as irregularity increased. For medium-rise structures, the drift concentration factors(DCFs) for SCED systems were lower than those for BRB frames. This means that SCED-braced frames deform in a more uniform manner with respect to building height. The effect of the torsional irregularity on the magnitude of the DCFs was small.

A study on detailing gusset plate and bracing members in concentrically braced frame structures

  • Hassan, M.S.;Salawdeh, S.;Hunt, A.;Broderick, B.M.;Goggins, J.
    • Advances in Computational Design
    • /
    • v.3 no.3
    • /
    • pp.233-267
    • /
    • 2018
  • Conventional seismic design of concentrically braced frame (CBF) structures suggests that the gusset plate connecting a steel brace to beams and/or columns should be designed as non-dissipative in earthquakes, while the steel brace members should be designed as dissipative elements. These design intentions lead to thicker and larger gusset plates in design on one hand and a potentially under-rated contribution of gusset plates in design, on the other hand. In contrast, research has shown that compact and thinner gusset plates designed in accordance with the elliptical clearance method rather than the conventional standard linear clearance method can enhance system ductility and energy dissipation capacity in concentrically braced steel frames. In order to assess the two design methods, six cyclic push-over tests on full scale models of concentric braced steel frame structures were conducted. Furthermore, a 3D finite element (FE) shell model, incorporating state-of-the-art tools and techniques in numerical simulation, was developed that successfully replicates the response of gusset plate and bracing members under fully reversed cyclic axial loading. Direct measurements from strain gauges applied to the physical models were used primarily to validate FE models, while comparisons of hysteresis load-displacement loops from physical and numerical models were used to highlight the overall performance of the FE models. The study shows the two design methods attain structural response as per the design intentions; however, the elliptical clearance method has a superiority over the standard linear method as a fact of improving detailing of the gusset plates, enhancing resisting capacity and improving deformability of a CBF structure. Considerations were proposed for improvement of guidelines for detailing gusset plates and bracing members in CBF structures.

Control of the along-wind response of steel framed buildings by using viscoelastic or friction dampers

  • Mazza, Fabio;Vulcano, Alfonso
    • Wind and Structures
    • /
    • v.10 no.3
    • /
    • pp.233-247
    • /
    • 2007
  • The insertion of steel braces has become a common technique to limit the deformability of steel framed buildings subjected to wind loads. However, when this technique is inadequate to keep floor accelerations within acceptable levels of human comfort, dampers placed in series with the steel braces can be adopted. To check the effectiveness of braces equipped with viscoelastic (VEDs) or friction dampers (FRDs), a numerical investigation is carried out focusing attention on a three-bay fifteen-storey steel framed building with K-braces. More precisely, three alternative structural solutions are examined for the purpose of controlling wind-induced vibrations: the insertion of additional diagonal braces; the insertion of additional diagonal braces equipped with dampers; the insertion of both additional diagonal braces and dampers supported by the existing K-braces. Additional braces and dampers are designed according to a simplified procedure based on a proportional stiffness criterion. A dynamic analysis is carried out in the time domain using a step-by-step initial-stress-like iterative procedure. Along-wind loads are considered at each storey assuming the time histories of the wind velocity, for a return period $T_r=5$ years, according to an equivalent wind spectrum technique. The behaviour of the structural members, except dampers, is assumed linear elastic. A VED and an FRD are idealized by a six-element generalized model and a bilinear (rigid-plastic) model, respectively. The results show that the structure with damped additional braces can be considered, among those examined, the most effective to control vibrations due to wind, particularly the floor accelerations. Moreover, once the stiffness of the additional braces is selected, the VEDs are slightly more efficient than the FRDs, because they, unlike the FRDs, dissipate energy also for small amplitude vibrations.

Rigid plastic analysis for the seismic performance evaluation of steel storage racks

  • Montuori, Rosario;Gabbianelli, Giammaria;Nastri, Elide;Simoncelli, Marco
    • Steel and Composite Structures
    • /
    • v.32 no.1
    • /
    • pp.1-19
    • /
    • 2019
  • The aim of the paper is the prediction of the seismic collapse mode of steel storage pallet racks under seismic loads. The attention paid by the researchers on the behaviour of the industrial steel storage pallets racks is increased over the years thanks to their high dead-to-live load ratio. In fact, these structures, generally made by cold-formed thin-walled profiles, present very low structural costs but can support large and expensive loads. The paper presents a prediction of the seismic collapse modes of multi-storey racks. The analysis of the possible collapse modes has been made by an approach based on the kinematic theorem of plastic collapse extended to the second order effects by means of the concept of collapse mechanism equilibrium curve. In this way, the dissipative behaviour of racks is determined with a simpler method than the pushover analysis. Parametric analyses have been performed on 24 racks, differing for the geometric layout and cross-section of the components, designed in according to the EN16618 and EN15512 requirements. The obtained results have highlighted that, in all the considered cases, the global collapse mechanism, that is the safest one, never develops, leading to a dangerous situation that must be avoided to preserve the structure during a seismic event. Although the studied racks follow all the codes prescriptions, the development of a dissipative collapse mechanism is not achieved. In addition, also the variability of load distribution has been considered, reflecting the different pallet positions assumed during the in-service life of the racks, to point out its influence on the collapse mechanism. The information carried out from the paper can be very useful for designers and manufacturers because it allows to better understand the racks behaviour in seismic load condition.

Inserting the mass proportional damping (MPD) system in a concrete shear-type structure

  • Silvestri, Stefano;Trombetti, Tomaso;Ceccoli, Claudio
    • Structural Engineering and Mechanics
    • /
    • v.16 no.2
    • /
    • pp.177-193
    • /
    • 2003
  • This paper presents an illustrative example of the advantages offered by inserting added viscous dampers into shear-type structures in accordance with a special scheme based upon the mass proportional damping (MPD) component of the Rayleigh viscous damping matrix. In previous works developed by the authors, it has been widely shown that, within the class of Rayleigh damped systems and under the "equal total cost" constraint, the MPD system provides best overall performance both in terms of minimising top-storey mean square response to a white noise stochastic input and maximising the weighted average of modal damping ratios. A numerical verification of the advantages offered by the application of MPD systems to a realistic structure is presented herein with reference to a 4-storey reinforced-concrete frame. The dynamic response of the frame subjected to both stochastic inputs and several recorded earthquake ground motions is here analysed in detail. The results confirm the good dissipative properties of MPD systems and indicate that this is achieved at the expense of relatively small damping forces.

Numerical dissipation for explicit, unconditionally stable time integration methods

  • Chang, Shuenn-Yih
    • Earthquakes and Structures
    • /
    • v.7 no.2
    • /
    • pp.159-178
    • /
    • 2014
  • Although the family methods with unconditional stability and numerical dissipation have been developed for structural dynamics they all are implicit methods and thus an iterative procedure is generally involved for each time step. In this work, a new family method is proposed. It involves no nonlinear iterations in addition to unconditional stability and favorable numerical dissipation, which can be continuously controlled. In particular, it can have a zero damping ratio. The most important improvement of this family method is that it involves no nonlinear iterations for each time step and thus it can save many computationally efforts when compared to the currently available dissipative implicit integration methods.

Mathematical Properties of the Differential Pom-Pom Model

  • Kwon, Youngdon
    • Macromolecular Research
    • /
    • v.9 no.3
    • /
    • pp.164-170
    • /
    • 2001
  • Recently in order to describe the complex rheological behavior of polymer melts with long side branches like low density polyethylene, new constitutive equations called the pom-pom equations have been derived by McLeish and Larson on the basis of the reptation dynamics with simplified branch structure taken into account. In this study mathematical stability analysis under short and high frequency wave disturbances has been performed for the simplified differential version of these constitutive equations. It is proved that they are globally Hadamard stable except for the case of maximum constant backbone stretch (λ = q) with arm withdrawal s$\_$c/ neglected, as long as the orientation tensor remains positive definite or the smooth strain history in the now is previously given. However this model is dissipative unstable, since the steady shear How curves exhibit non-monotonic dependence on shear rate. This type of instability corresponds to the nonlinear instability in simple shear flow under finite amplitude disturbances. Additionally in the flow regime of creep shear flow where the applied constant shear stress exceeds the maximum achievable value in the steady now curves, the constitutive equations will possibly violate the positive definiteness of the orientation tensor and thus become Hadamard unstable.

  • PDF

A High Efficiency ZVS PWM Asymmetrical Half Bridge Converter for Plasma Display Panel Sustaining Power Modules

  • Han Sang-Kyoo;Moon Gun-Woo;Youn Myung-Joong
    • Journal of Power Electronics
    • /
    • v.5 no.1
    • /
    • pp.67-75
    • /
    • 2005
  • A high efficiency ZVS PWM asymmetrical half bridge converter for a plasma display panel (PDP) sustaining power modules is proposed in this paper. To achieve the ZVS of power switches for the wide load range, a small additional inductor L/sub 1kg/, which also acts as an output filter inductor, is serially inserted into the transformer's primary side. At that point, to solve the problem of ringing in the secondary rectifier caused by L/sub 1kg/, the proposed circuit employs a structure without the output filter inductor, which helps the voltages across rectifier diodes to be clamped at the output voltage. Therefore, no dissipative RC (resistor capacitor) snubber for rectifier diodes is needed and a high efficiency as well as low noise output voltage can be realized. In addition, since it has no large output inductor filter, the asymmetrical half bridge converter features a simpler structure, lower cost, less mass, and lighter weight. In addition, since all energy stored in L/sub 1kg/ is transferred to the output side, the circulating energy problem can be effectively solved. The operational principle, theoretical analysis, and design considerations are presented. To confirm the operation, validity, and features of the proposed circuit, experimental results from a 425W, 385Vdc/170Vdc prototype are presented.

A Study on the Change of Concept in Architectural Space following the Aesthetic Cognition of Space (미학적 공간인식에 따른 건축공간개념의 변화에 관한 연구)

  • 이용재;윤도근
    • Korean Institute of Interior Design Journal
    • /
    • no.16
    • /
    • pp.22-28
    • /
    • 1998
  • The purpose of this study is to analyze the architectural space of modern and contemporary architecture which has been changed by the aesthetic cognition on space. The intention of considering architectural space aesthetically is to convert the viewpoint of seeing space as simple physical structure into different viewpoint of regarding 'space' as 'cultural place' However this does not means to apply aesthetic theory to architectural space. The aesthetic cognition on space is one of the main subjects of the expression of art from ancient to today however the appearance of space concept as architectural aesthetics accelerated by G. Semper theory after the latter half of 19th century. On the standpoint of perpetuity in architecture the aesthetics of scientific rationalism in modernism based on the reasonable thinking regards the variety of inherent characteristic in architectural space as 'Transferential Space'. On the other hand, in regarding to architectural trend, the nature in architectural space has been considered as 'Existential Space' starting from the conscious construction of environments to help human existence in the existentialism. The Conclusion logic of follows as belows; first, the concept of space structure in architecture has been exchanged from Enclosed Space to Topological Space. Second, the concept of architectural space has been changed and developed to the Deterministic, Profound, Dissipative, and Recognizable Space according to the change of expression in architecture.

  • PDF

A High Efficiency ZVS PWM Asymmetrical Half Bridge Converter for Plasma Display Panel Sustaining Power Module

  • Han Sang-Kyoo;Moon Gun-Woo;Youn Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.537-541
    • /
    • 2004
  • A high efficiency ZVS PWM asymmetrical half bridge converter for a plasma display panel (PDP) sustaining power module is proposed in this paper. To achieve the ZVS of power switches for the wide fond range, n small additional inductor $L_{lkg}$, which also acts as an output filter inductor, is serially inserted to the transformer primary side. Then, to solve the problem related to ringing in the secondary rectifier caused by $L_{lkg}$, the proposed circuit employs a structure without the output filter inductor, which helps the voltages across rectifier diodes to be clamped at the output voltage. Therefore, no dissipative RC (resistor capacitor) snubber for rectifier diodes is needed and n high efficiency as well as low noise output voltage can be realized. In addition, since it has no large output inductor filter, it features a simpler structure, lower cost, less mass, and lighter weight. Moreover, since all energy stored in $L_{lkg}$ is transferred to the output side, the circulating energy problem can be effectively solved. The operational principle, theoretical analysis, and design considerations are presented. To confirm the operation, validity, and features of the proposed circuit, experimental results from a 425W, 385Vdc/170Vdc prototype are presented.

  • PDF