• 제목/요약/키워드: dissipative potential

검색결과 14건 처리시간 0.023초

Nonexistence and non-decoupling of the dissipative potential for geo-materials

  • Liu, Yuanxue;Zhang, Yu;Wu, Runze;Zhou, Jiawu;Zheng, Yingren
    • Geomechanics and Engineering
    • /
    • 제9권4호
    • /
    • pp.531-545
    • /
    • 2015
  • Two fundamental issues exist in the damage theory of geo-material based on the concept of thermodynamics: existence or nonexistence of the dissipation potential, and whether the dissipation potential could be decoupled into a damage potential and a plastic one or not. Thermodynamics theory of elastoplastic damage assumes the existence of dissipation potential, but the presence of dissipation potential is conditional. Based on the dissipation inequality in accord with the second law of thermodynamics, the sufficient and necessary conditions are given for the existence of the dissipation potential separately in total and incremental forms firstly, and proved strictly in theory. With taking advantage of the basic mechanical properties of geo-materials, the nonexistence of the dissipative potential is verified. The sufficient and necessary conditions are also given and proved for the decoupling of the dissipation potential of geo-materials in total and incremental forms. Similarly, the non-decoupling of the dissipation potential has also been proved, which indicates the dissipation potential of geo-materials in total or incremental forms could not be decoupled into a dissipative potential for plasticity and that for damage respectively. The research results for the fundamental issues in the thermodynamics theory of damage will help establish and improve the theoretic basis of elastoplastic damage constitutive model for geo-materials.

Nonexistence and non-decoupling of the dissipative potential for geo-materials

  • Liu, Yuanxue;Zhang, Yu;Wu, Runze;Zhou, Jiawu;Zheng, Yingren
    • Geomechanics and Engineering
    • /
    • 제9권5호
    • /
    • pp.569-583
    • /
    • 2015
  • Two fundamental issues exist in the damage theory of geo-material based on the concept of thermodynamics: existence or nonexistence of the dissipation potential, and whether the dissipation potential could be decoupled into a damage potential and a plastic one or not. Thermodynamics theory of elastoplastic damage assumes the existence of dissipation potential, but the presence of dissipation potential is conditional. Based on the dissipation inequality in accord with the second law of thermodynamics, the sufficient and necessary conditions are given for the existence of the dissipation potential separately in total and incremental forms firstly, and proved strictly in theory. With taking advantage of the basic mechanical properties of geo-materials, the nonexistence of the dissipative potential is verified. The sufficient and necessary conditions are also given and proved for the decoupling of the dissipation potential of geo-materials in total and incremental forms. Similarly, the non-decoupling of the dissipation potential has also been proved, which indicates the dissipation potential of geo-materials in total or incremental forms could not be decoupled into a dissipative potential for plasticity and that for damage respectively. The research results for the fundamental issues in the thermodynamics theory of damage will help establish and improve the theoretic basis of elastoplastic damage constitutive model for geo-materials.

ON THE DISSIPATIVE HELMHOLTZ EQUATION IN A CRACKED DOMAIN WITH THE DIRICHLET-NEUMANN BOUNDARY CONDITION

  • Krutitskii, P.A.;Kolybasova, V.V.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제9권1호
    • /
    • pp.63-77
    • /
    • 2005
  • The Dirichlet-Neumann problem for the dissipative Helmholtz equation in a connected plane region bounded by closed curves and containing cuts is studied. The Neumann condition is given on the closed curves, while the Dirichlet condition is specified on the cuts. The existence of a classical solution is proved by potential theory. The integral representation of the unique classical solution is obtained. The problem is reduced to the Fredholm equation of the second kind and index zero, which is uniquely solvable. Our results hold for both interior and exterior domains.

  • PDF

물리적 모델에 기반한 다상 유체 현상 애니메이션 (A Physics-Based Modelling of Multiphase Fluid Phenomena)

  • 송오영;신현철;고형석
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제10권4호
    • /
    • pp.13-21
    • /
    • 2004
  • This paper presents a physically based technique for simulating complex multiphase fluids. This work is motivated by the "stable fluids" method developed by Stam to handle gaseous fluids. We extend this technique to water, which calls for the development of methods for modeling multiphase fluids and suppressing dissipation. We construct a multiphase fluid formulation by combining the Navier-Stokes equations with the level set method. By adopting constrained interpolation profile (CIP)-based advection, we reduce the numerical dissipation and diffusion significantly. We further reduce the dissipation by converting potential1y dissipative cel1s into droplets or bubbles that undergo Lagrangian motion. Due to the multiphase formulation, the proposed method properly simulates the interaction of water with surrounding air, instead of simulating water in a void space. Moreover, the introduction of the non-dissipative technique means that, in contrast to previous methods, the simulated water does not unnecessarily lose mass and its motion is not damped to an unphysical extent. Experiments showed that the proposed method is stable and runs fast. It is demonstrated that two-dimensional simulation runs in real-time.

  • PDF

New phenomena associated with the nonlinear dynamics and stability of autonomous damped systems under various types of loading

  • Sophianopoulos, Dimitris S.
    • Structural Engineering and Mechanics
    • /
    • 제9권4호
    • /
    • pp.397-416
    • /
    • 2000
  • The present study deals with the nonlinear dynamics and stability of autonomous dissipative either imperfect potential (limit point) systems or perfect (bifurcational) non-potential ones. Through a fully nonlinear dynamic analysis, performed on two simple 2-DOF models corresponding to the classes of systems mentioned above, and with the aid of basic definitions of the theory of nonlinear dynamical systems, new important phenomena are revealed. For the first class of systems a third possibility of postbuckling dynamic response is offered, associated with a point attractor on the prebuckling primary path, while for the second one the new findings are chaos-like (most likely chaotic) motions, consecutive regions of point and periodic attractors, series of global bifurcations and point attractor response of always existing complementary equilibrium configurations, regardless of the value of the nonconservativeness parameter.

Membrane Penetration and Translocation of Nanoparticles

  • 신동주;현정인;심은지
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제2회(2013년)
    • /
    • pp.139-151
    • /
    • 2013
  • Understanding interactions between nanoparticles and lipid bilayer membranes is of great importance due to the potential applications in bio-nanotechnology such as drug deliveries, carrying genes, and utilization of integral membrane proteins. To investigate the dynamics of nanoparticle penetration and translocation into membranes, we performed dissipative particle dynamics simulations which use simple and intuitive coarse-grained models yet effectively describe hydrodynamic interactions in cell environment. We discuss the influence of the shape of nanoparticles as well as the properties of membranes including large membrane-embedded proteins that are found to significantly affect orientation of nanoparticles within membranes and, in turn, the minimum force required to translocate nanoparticles.

  • PDF

Performance of Adaptive TMD for Tall Building Damping

  • Weber, Felix;Yalniz, Fatih;Kerner, Deniz;Huber, Peter
    • 국제초고층학회논문집
    • /
    • 제10권2호
    • /
    • pp.99-107
    • /
    • 2021
  • This research investigates the potential of Adaptive TMDs for tall building damping. The Adaptive TMD under consideration is based on real-time controlled hydraulic dampers generating purely dissipative control forces. The control approach is designed to enhance the Adaptive TMD efficiency for moderate wind loads with return periods below 50 years. The resulting enhanced TMD efficiency is used to reduce the pendulum mass by 15% compared to the passive TMD while still guaranteeing the acceleration limits of the one and ten year return period winds. Furthermore, the adaptive control approach is designed to disproportionally increase the controlled damping force at wind loads with return periods of 50 years and more in order to reduce the maximum relative motion of the Adaptive TMD with only 85% pendulum mass. Compared to the passive TMD with 100% pendulum mass the maximum relative motion is reduced by 20%. Both the pendulum mass reduction and the maximum relative motion reduction significantly reduce the foot print of the Adaptive TMD which is highly desirable from the economic point of view.

Evaluation of the effect of smart façade systems in reducing dynamic response of structures subjected to seismic loads

  • Samali, Bijan;Abtahi, Pouya
    • Earthquakes and Structures
    • /
    • 제11권6호
    • /
    • pp.983-1000
    • /
    • 2016
  • To date the engineering community has seen facade systems as non-structural elements with high aesthetic value and a barrier between the outdoor and indoor environments. The role of facades in energy use in a building has also been recognized and the industry is also witnessing the emergence of many energy efficient facade systems. This paper will focus on using exterior skin of the double skin facade system as a dissipative movable element during earthquake excitation. The main aim of this study is to investigate the potential of the facade system to act as a damper system to reduce earthquake-induced vibration of the primary structure. Unlike traditional mass dampers, which are usually placed at the top level of structures, the movable/smart double skin facade systems are distributed throughout the entire height of building structures. The outer skin is moveable and can act as a multi tuned mass dampers (MTMDs) that move and dissipate energy during strong earthquake motions. In this paper, using a three dimensional 10-storey building structure as the example, it is shown that with optimal choice of materials for stiffness and damping of brackets connecting the two skins, a substantial portion of earthquake induced vibration energy can be dissipated which leads to avoiding expensive ductile seismic designs. It is shown that the engineering demand parameters (EDPs) for a low-rise building structures subjected to moderate to severe earthquakes can be substantially reduced by introduction of a smart designed double skin system.

등방성 이력형 강재댐퍼를 이용한 RC 라멘조 아파트건물의 지진응답 개선 (Mitigating Seismic Response of RC Framed Apartment Building Using Isotropic Hysteretic Steel Dampers)

  • 천영수;방종대
    • 토지주택연구
    • /
    • 제5권2호
    • /
    • pp.107-114
    • /
    • 2014
  • 수동형 제진장치를 이용하는 제진구조는 수년간 개발이 지속되고 있으며, 1990년대 중반이후로 여러 나라들에서 실무적인 적용이 빠르게 증가되고 있다. 국내의 경우 이러한 제진장치 중 강재이력형 댐퍼가 비교적 저렴한 비용과 설치와 관리가 용이하다는 이유로 건물의 내진설계를 위하여 보편적으로 많이 적용되고 있다. 이 논문에서는 건물의 지진응답을 개선하기 위하여 적용된 소위 카고메댐퍼로 불리우는 등방성 강재이력형 댐퍼(Isotropic Hysteretic Metallic Damper, IHMD)의 유효성에 대한 해석적인 사례연구를 제시하고 있다. 연구대상 건물은 18층 규모의 철근콘크리트 라멘조 아파트건물로 해석결과를 통하여 IHMD의 실효성을 실증적으로 보여주고 있다. 해석결과는 IHMD가 건물의 지진응답을 줄일 수 있는 매우 효과적인 방법임을 검증하고 있다.

The tuned mass-damper-inerter for harmonic vibrations suppression, attached mass reduction, and energy harvesting

  • Marian, Laurentiu;Giaralis, Agathoklis
    • Smart Structures and Systems
    • /
    • 제19권6호
    • /
    • pp.665-678
    • /
    • 2017
  • In this paper the tuned mass-damper-inerter (TMDI) is considered for passive vibration control and energy harvesting in harmonically excited structures. The TMDI couples the classical tuned mass-damper (TMD) with a grounded inerter: a two-terminal linear device resisting the relative acceleration of its terminals by a constant of proportionality termed inertance. In this manner, the TMD is endowed with additional inertia, beyond the one offered by the attached mass, without any substantial increase to the overall weight. Closed-form analytical expressions for optimal TMDI parameters, stiffness and damping, given attached mass and inertance are derived by application of Den Hartog's tuning approach to suppress the response amplitude of force and base-acceleration excited single-degree-of-freedom structures. It is analytically shown that the TMDI is more effective from a same mass/weight TMD to suppress vibrations close to the natural frequency of the uncontrolled structure, while it is more robust to detuning effects. Moreover, it is shown that the mass amplification effect of the inerter achieves significant weight reduction for a target/predefined level of vibration suppression in a performance-based oriented design approach compared to the classical TMD. Lastly, the potential of using the TMDI for energy harvesting is explored by substituting the dissipative damper with an electromagnetic motor and assuming that the inertance can vary through the use of a flywheel-based inerter device. It is analytically shown that by reducing the inertance, treated as a mass/inertia-related design parameter not considered in conventional TMD-based energy harvesters, the available power for electric generation increases for fixed attached mass/weight, electromechanical damping, and stiffness properties.