• Title/Summary/Keyword: dissipation rate

Search Result 460, Processing Time 0.023 seconds

Estimation of Radio Frequency Electric Field Strength for Dielectric Heating of Phenol-Resorcinol-Formaldehyde Resin Used for Manufacturing Glulam (구조용 집성재 제조용 접착제(Phenol-Resorcinol-Formaldehyde Resin) 유전 가열을 위한 고주파 전기장 세기 추산)

  • Yang, Sang-Yun;Han, Yeonjung;Park, Yonggun;Eom, Chang-Deuk;Kim, Se-Jong;Kim, Kwang-Mo;Park, Moon-Jae;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.3
    • /
    • pp.339-345
    • /
    • 2014
  • For enhancing productivity of glulam, high frequency (HF) curing technique was researched in this study. Heat energy is generated by electromagnetic energy dissipation when HF wave is applied to a dielectric material. Because both lamina and adhesives have dielectric property, internal heat generation would be occurred when HF wave is applied to glulam. Most room temperature setting adhesives such as phenol-resorcinol-formaldehyde (PRF) resin, which is popularly used for manufacturing glulam, can be cured more quickly as temperature of adhesives increases. In this study, dielectric properties of larch wood and PRF adhesives were experimentally evaluated, and the mechanism of HF heating, which induced the fast curing of glue layer in glulam, was theoretically analyzed. Result of our experiments showed relative loss factor of PRF resin, which leads temperature increase, was higher than that of larch wood. Also, it showed density and specific heat of PRF, which are resistance factors of temperature increase, were higher than those of wood. It was expected that the heat generation in PRF resin by HF heating would occur greater than in larch wood, because the ratio of relative loss factor to density and specific heat of PRF resin was greater than that of larch wood. Through theoretical approach with the experimental results, the relative strengths of ISM band HF electric fields to achieve a target heating rate were estimated.

The Characteristics of Groundwater and a Field Test for Thermal Insulation of Landfarming of Petroleum Contaminated Soil in Winter Season (유류오염지역의 지하수 수질특성 및 동절기 토양경작법의 온도보전을 위한 현장사례 연구)

  • Cho, Chang-Hwan;Kim, Soon-Heum;An, Jong-Ik;Lee, Yoon-Oh;Choi, Sang-Il
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.5
    • /
    • pp.7-14
    • /
    • 2013
  • The objectives of this study were to identify the characteristics of groundwater in the petroleum contaminated site and to evaluate the applicability of house-type landfarm facilities heated with briquette stoves in winter season. The six monitoring wells were installed at the site where pH, dissolved oxygen, and temperature were all measured. Also groundwater contaminants, benzene, toluene, ethylbenzene, xylene and total petroleum hydrocarbon, were analyzed twice. House-type two landfarm facilities ($12m{\times}40m{\times}4.8m$) each installed with four briquette stoves were constructed. During four rounds treatment process, VOCs, moisture, temperature were monitored and soil contaminants were analyzed. The pH was 6.37 and considered subacid and DO was measured to be 3.12 mg/L. The temperature of groundwater was measured to be $9.48^{\circ}C$. The groundwater contaminants were detected only in the monitoring wells within the contaminated area or close to it showing that the groundwater contaminated area was similar to the soil contaminated area. During the landfarm process, 73.3% of VOCs concentration in interior gas was decreased and moisture was lowered from 17.7% to 13.4%. In the morning, at 8:00 am, the temperature was decreased showing soil ($5.5^{\circ}C$) > interior ($4.8^{\circ}C$) > exterior ($3.5^{\circ}C$). In the afternoon, at 2:00 pm, the temperature was soil ($8.6^{\circ}C$) < interior ($9.9^{\circ}C$) < exterior ($11.5^{\circ}C$) with solar radiation. The temperature difference between interior and exterior was $0.7^{\circ}C$ in the morning, but it was $1.6^{\circ}C$ in the afternoon. A total of 130 days were taken for four round landfarm processes. Each process was completed within 33 days showing 80% of cleanup efficiency ($1^{st}$ order dissipation rate(k) = 0.1771).

Seismic damage evaluation of steel reinforced recycled concrete filled circular steel tube composite columns

  • Hui, Ma;Xiyang, Liu;Yunchong, Chen;Yanli, Zhao
    • Earthquakes and Structures
    • /
    • v.23 no.5
    • /
    • pp.445-462
    • /
    • 2022
  • To investigate and evaluate the seismic damage behaviors of steel reinforced recycled concrete (SRRC) filled circular steel tube composite columns, in this study, the cyclic loading tests of 11 composite columns was carried out by using the load-displacement joint control method. The seismic damage process, hysteretic curves and performance indexes of composite columns were observed and obtained. The effects of replacement rates of recycled coarse aggregate (RCA), diameter thickness ratio, axial compression ratio, profile steel ratio and section form of profile steel on the seismic damage behaviors of composite columns were also analyzed in detail. The results show that the failure model of columns is a typical bending failure under the combined action of horizontal loads and vertical loads, and the columns have good energy dissipation capacity and ductility. In addition, the replacement rates of RCA have a certain adverse effect on the seismic bearing capacity, energy consumption and ductility of columns. The seismic damage characteristics of composite columns are revealed according to the failure modes and hysteretic curves. A modified Park-Ang seismic damage model based on the maximum displacement and cumulative energy consumption was proposed, which can consider the adverse effect of RAC on the seismic damage of columns. On this basis, the performance levels of composite columns are divided into five categories, The interlayer displacement angle and damage index are used as the damage quantitative indicators of composite columns, and the displacement angle limits of composite columns at different performance levels under 80% assurance rate are calculated as 1/105, 1/85, 1/65, 1/28, and 1/25 respectively. On this basis, the damage index limits corresponding to each performance level are calculated as 0.045, 0.1, 0.48, 0.8, and 1.0 respectively. Finally, the corresponding relations among the performance levels, damage degrees, interlayer displacement angles and damage indexes of composite columns are established. The conclusions can provide reference for the seismic design of SRRC filled circular steel tube composite columns, it fills the vacancy in the research on seismic damage of steel reinforced recycled concrete (SRRC) filled circular steel tube composite columns.

Growth and Photocurrent Properties of $CuGaSe_2$ Single Crystal ($CuGaSe_2$ 단결정 박막 성장과 광전류 특성)

  • K.J. Hong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.81-81
    • /
    • 2003
  • The stochiometric mixture of evaporating materials for the CuGaSe$_2$ single crystal thin films were prepared from horizontal furnace. Using extrapolation method of X-ray diffraction patterns for the polycrystal CuGaSe$_2$, it was found tetragonal structure whose lattice constant no and co were 5.615$\AA$ and 11.025$\AA$, respectively. To obtains the single crystal thin films, CuGaSe$_2$ mixed crystal was deposited on throughly etched GaAs(100) by the Hot Wall Epitaxy(HWE) system. The source and substrate temperature were 61$0^{\circ}C$ and 45$0^{\circ}C$ respectively, and the growth rate of the single crystal thin films was about 0.5${\mu}{\textrm}{m}$/h. The crystalline structure of single crystal thin films was investigated by the double crystal X-ray diffraction(DCXD). Hall effect on this sample was measured by the method of van der pauw and studied on carrier density and mobility depending on temperature. From Hall data, the mobility was likely to be decreased by pizoelectric scattering in the temperature range 30K to 150K and by polar optical scattering in the temperature range 150K to 293K. The optical energy gaps were found to be 1.68eV for CuGaSe$_2$ single crystal thin films at room temperature. The temperature dependence of the photocurrent peak energy is well explained by the Varshni equation then the constants in the Varshni equation are given by a=9.615$\times$ 10$^{-4}$ eV/K, and $\beta$=335K. From the photocurrent spectra by illumination of polarized light of the CuGaSe$_2$ single crystal thin films. We have found that values of spin orbit coupling ΔSo and crystal field splitting ΔCr was 0.0900eV and 0.2498eV, respectively. From the PL spectra at 20K, the peaks corresponding to free bound excitons and D-A pair and a broad emission band due to SA is identified. The binding energy of the free excitons are determined to be 0.0626eV and the dissipation energy of the acceptor-bound exciton and donor-bound exciton to be 0.0352eV, 0.0932eV, respectively.

  • PDF

Prioritizing for Selection of New High-heat Risk Industries and Thermal Risk Assessment (신규 고열 위험 업종 선정을 위한 우선순위 및 온열 위험 평가)

  • Saemi Shin;Hea Min Lee;Nosung Ki;Jeongmin Park;Sang-Hoon Byeon;Sungho Kim
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.2
    • /
    • pp.230-246
    • /
    • 2023
  • Objectives: The climate crisis has arrived and heat-related illnesses are increasing. It is necessary to discover new high-heat risk industries and understand the environment . It is also necessary to prioritize risks of industries that have not been included in the management target to date. The study was intended to monitor and evaluate the thermal risk of high-priority workplaces. Methods: A prioritization method was developed based on five factors: occurrence of and death due to heat-related illnesses, work environment monitoring, indoor work rate, small heat source, and limited heat dissipation. it, was applied to industrial accidents caused by heat-related illnesses. Wet bulb temperature index and apparent temperature were measured in July and August at 24 workplaces in seven industries and assessed for thermal risk. Results: The wet bulb temperature index was in the range of 23.8~31.9℃, and exposure limits were exceeded in the growing of crops, food services activities and accommodation, and building construction. The apparent temperature was in the range of 26.8~36.7℃, and exceeded the temperature standard for issuing heatwave warnings in growing of crops, food services activities and accommodation, warehousing, welding, and building construction. Both temperature index in growing of crops and building construction were higher than the outside air temperature. Conclusions: In the workplace, risks in industries that have not be controlled and recognized through existing systems was identified. it is necessary to provide break times according to the work-rest time ratio required during dangerous time period.

A 10b 25MS/s $0.8mm^2$ 4.8mW 0.13um CMOS ADC for Digital Multimedia Broadcasting applications (DMB 응용을 위한 10b 25MS/s $0.8mm^2$ 4.8mW 0.13um CMOS A/D 변환기)

  • Cho, Young-Jae;Kim, Yong-Woo;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.11 s.353
    • /
    • pp.37-47
    • /
    • 2006
  • This work proposes a 10b 25MS/s $0.8mm^2$ 4.8mW 0.13um CMOS A/D Converter (ADC) for high-performance wireless communication systems such as DVB, DAB and DMB simultaneously requiring low voltage, low power, and small area. A two-stage pipeline architecture minimizes the overall chip area and power dissipation of the proposed ADC at the target resolution and sampling rate while switched-bias power reduction techniques reduce the power consumption of analog amplifiers. A low-power sample-and-hold amplifier maintains 10b resolution for input frequencies up to 60MHz based on a single-stage amplifier and nominal CMOS sampling switches using low threshold-voltage transistors. A signal insensitive 3-D fully symmetric layout reduces the capacitor and device mismatch of a multiplying D/A converter while low-noise reference currents and voltages are implemented on chip with optional off-chip voltage references. The employed down-sampling clock signal selects the sampling rate of 25MS/s or 10MS/s with a reduced power depending on applications. The prototype ADC in a 0.13um 1P8M CMOS technology demonstrates the measured DNL and INL within 0.42LSB and 0.91LSB and shows a maximum SNDR and SFDR of 56dB and 65dB at all sampling frequencies up to 2SMS/s, respectively. The ADC with an active die area if $0.8mm^2$ consumes 4.8mW at 25MS/s and 2.4mW at 10MS/s at a 1.2V supply.

Residual Pattern of Pesticide, Chlorfluazuron in Perilla Leaves Under Plastic House (들깻잎 재배 중 chlorfluazuron의 잔류량 변화 및 잔류분석법 시험)

  • Lee, Min-Ho;Kim, Seok-Ho;Park, Young-Guin;Jo, Gyeong-Yeon;Shin, Byung-Gon;Kim, Jong-Han;Kwon, Chan-Hyeok;Sohn, Jae-Keun;Kim, Jang-Eok
    • The Korean Journal of Pesticide Science
    • /
    • v.11 no.2
    • /
    • pp.106-116
    • /
    • 2007
  • Pesticide, chlorfluazuron was subjected to determine the safety of terminal residues at the harvesting date of perilla leaves cultivated in plastic house. After the pesticide applied on a foliar spray in 2005 and 2006, leaf persistence of its residue was analysed for 10 days before leaf harvest. The degradation rate of chlorfluazuron in the leaf was 32.3 %(standard application), 43.6 %(double application) and 78.0 %(standard), 80.4 %(double) at second and tenth day, respectively, under analysis of GC/ECD in 2005. The degradation rate of chlorfluazuron in the leaf was 33.1 %(GC/ECD analyze), 34.0 %(HPLC/UVD analyze) and 77.9 %(GC/ECD), 78.4 %(HPLC/UVD) at second and tenth day, respectively, under the standard level of pesticide in 2006. The biological half-life of the chlorfluazuron residue was estimated by the regression equation calculated from daily dissipation of pesticide in the perilla leaves. The longest half-life of the chlorfluazuron residue in perilla leaves was 5.5 days. The maximum residual limit(MRL) for chlorfluazuron based on the longest half-life was estimated 2.0ppm at harvesting day, 2.5ppm at second day and 7.1ppm at tenth day before leaf harvesting of perilla.

Experimental Study on the Performance Improvement of Velcro Reinforcement through Internal Filling (내부충진을 통한 벨크로 보강재의 성능향상에 대한 실험적 연구)

  • Jeong, Yeong-Seok;Kwon, Minho;Kim, Jin-Sup;Nam, Gwang-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.4
    • /
    • pp.347-355
    • /
    • 2021
  • During the earthquake, for multi-story structure, if the first floor is soft, the deformation will concentrate on that floor causing a serious damage to the column members which might leads to the collapse of the whole structure like Piloti structure during the Pohang earthquake in Korea. According to the 2016 National Disaster Management Research Institute's "Investigation of Seismic Reinforcement and Cost Analysis of Domestic Non-seismic Buildings", the rate of seismic resistance of private reinforced concrete buildings was 38.3 %. Among them, it was reported that the seismic-resistance ratio of the two to five-story structures was less than 50 %. Accordingly, the government is trying to improve the seismic rate through support projects, but the conventional seismic reinforcement methods are still expensive, and emergency construction is difficult. Therefore, in this study, the field applicability was evaluated by improving the reinforcement method using Velcro, which was developed through the research project of the Ministry of Land, Transport and Maritime Affairs in 2014. In order to improve the performance of the Velcro reinforcement method, introducing the initial tension of Velcro using high foaming rigid urethane filling between the Velcro and concrete of the columns was applied. Additionally, an experiment was conducted to evaluate the ductility of Velcro specimen from the concrete confinement effect. As a result, the ductility of the Velcro specimen was improved compare to Normal specimen. However, the energy dissipation capacity of VELCRO2 is better than VELCRO1, yet the maximum ductility of those two specimens did not show a significant difference. Therefore, the improvement of the internal filler material is still needed to have a better maximum ductility.

A 10b 250MS/s $1.8mm^2$ 85mW 0.13um CMOS ADC Based on High-Accuracy Integrated Capacitors (높은 정확도를 가진 집적 커페시터 기반의 10비트 250MS/s $1.8mm^2$ 85mW 0.13un CMOS A/D 변환기)

  • Sa, Doo-Hwan;Choi, Hee-Cheol;Kim, Young-Lok;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.11 s.353
    • /
    • pp.58-68
    • /
    • 2006
  • This work proposes a 10b 250MS/s $1.8mm^2$ 85mW 0.13um CMOS A/D Converter (ADC) for high-performance integrated systems such as next-generation DTV and WLAN simultaneously requiring low voltage, low power, and small area at high speed. The proposed 3-stage pipeline ADC minimizes chip area and power dissipation at the target resolution and sampling rate. The input SHA maintains 10b resolution with either gate-bootstrapped sampling switches or nominal CMOS sampling switches. The SHA and two MDACs based on a conventional 2-stage amplifier employ optimized trans-conductance ratios of two amplifier stages to achieve the required DC gain, bandwidth, and phase margin. The proposed signal insensitive 3-D fully symmetric capacitor layout reduces the device mismatch of two MDACs. The low-noise on-chip current and voltage references can choose optional off-chip voltage references. The prototype ADC is implemented in a 0.13um 1P8M CMOS process. The measured DNL and INL are within 0.24LSB and 0.35LSB while the ADC shows a maximum SNDR of 54dB and 48dB and a maximum SFDR of 67dB and 61dB at 200MS/s and 250MS/s, respectively. The ADC with an active die area of $1.8mm^2$ consumes 85mW at 250MS/s at a 1.2V supply.

The study of growth and characterization of CuGaSe$_2$ single crystal thin films by hot wall epitaxy (HWE(Hot wall epitaxy)에 의한 CuGaSe$_2$단결정 박막 성장과 특성에 관한 연구)

  • 홍광준;백형원
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.3
    • /
    • pp.189-198
    • /
    • 2000
  • The stochiometric mixture of evaporating materials for the $CuGaSe_2$single crystal thin films were prepared from horizontal furnace. Using extrapolation method of X-ray diffraction patterns for the polycrystal $CuGaSe_2$, it was found tetragonal structure whose lattice constant $a_0}$ and $c_0$ were 5.615 $\AA$ and 11.025 $\AA$, respectively. To obtains the single crystal thin films, $CuGaSe_2$mixed crystal was deposited on throughly etched GaAs(100) by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $610^{\circ}C$ and $450^{\circ}C$ respectively, and the growth rate of the single crystal thin films was about 0.5$\mu\textrm{m}$/h. The crystalline structure of single crystal thin films was investigated by the double crystal X-ray diffraction (DCXD). Hall effect on this sample was measured by the method of van der Pauw and studied on carrier density and mobility depending on temperature. From Hall data, the mobility was likely to be decreased by pizoelectric scattering in the temperature range 30 K to 150 K and by polar optical scattering in the temperature range 150 K to 293 K. The optical energy gaps were found to be 1.68 eV for CuGaSe$_2$sing1e crystal thin films at room temperature. The temperature dependence of the photocurrent peak energy is well explained by the Varshni equation then the constants in the Varshni equation are given by $\alpha$ = $9.615{\times}10^{-4}$eV/K, and $\beta$ = 335 K. From the photocurrent spectra by illumination of polarized light of the $CuGaSe_2$single crystal thin films. We have found that values of spin orbit coupling $\Delta$So and crystal field splitting $\Delta$Cr was 0.0900 eV and 0.2498 eV, respectively. From the PL spectra at 20 K, the peaks corresponding to free bound excitons and D-A pair and a broad emission band due to SA is identified. The binding energy of the free excitons are determined to be 0.0626 eV and the dissipation energy of the acceptor-bound exciton and donor-bound exciton to be 0.0352 eV, 0.0932 eV, respectively.

  • PDF