• Title/Summary/Keyword: dissipation rate

Search Result 461, Processing Time 0.028 seconds

A Design of Pipelined Adaptive Decision-Feedback Equalized using Delayed LMS and Redundant Binary Complex Filter Structure (Delayed LMS와 Redundant Binary 복소수 필터구조를 이용한 파이프라인 적응 결정귀환 등화기 설계)

  • An, Byung-Gyu;Lee, Jong-Nam;Shin, Kyung-Wook
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.12
    • /
    • pp.60-69
    • /
    • 2000
  • This paper describes a single-chip full-custom implementation of pipelined adaptive decision-feedback equalizer(PADFE) using a 0.25-${\mu}m$ CMOS technology for wide-band wireless digital communication systems. To enhance the throughput rate of ADFE, two pipeline stages are inserted into the critical path of the ADFE by using delayed least-mean-square(DLMS) algorithm. Redundant binary (RB) arithmetic is applied to all the data processing of the PADFE including filter taps and coefficient update blocks. When compared with conventional methods based on two's complement arithmetic, the proposed approach reduces arithmetic complexity, as well as results in a very simple complex-valued filter structure, thus suitable for VLSI implementation. The design parameters including pipeline stage, filter tap, coefficient and internal bit-width, and equalization performance such as bit error rate (BER) and convergence speed are analyzed by algorithm-level simulation using COSSAP. The single-chip PADFE contains about 205,000 transistors on an area of about $1.96\times1.35-mm^2$. Simulation results show that it can safely operate with 200-MHz clock frequency at 2.5-V supply, and its estimated power dissipation is about 890-mW. Test results show that the fabricated chip works functionally well.

  • PDF

Evaluation of Surface Temperature Variation and Heat Exchange Rate of Concrete Road Pavement with Buried Circulating Water Piping (열매체 순환수 배관이 매설된 콘크리트 도로 포장체의 표면 온도 변화와 방열량 평가)

  • Byonghu Sohn;Yongki Kim
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.19 no.3
    • /
    • pp.1-13
    • /
    • 2023
  • Hydronic heated road pavement (HHP) systems have been well established and documented to provide road safety in winter season over the past two decades. However, most of the systems run on asphalt, only a few are tested with concrete, and there rarely is a comparison between those two common road materials in their performance. The aim of this study is to investigate the thermal performance of the concrete HHP systems, including surface temperature variations of experimental pavements in winter season. For preliminary study a small-scale experimental system was installed to evaluate the heat transfer characteristics of the concrete HHP in the test field. The system consists of 3 concrete slabs made of 1 m in width, 1 m in length, and 0.25 m in height. In these slabs, circulating water piping was embedded with different pipe depths of 0.08 m (Case A), 0.12 m (Case B), and 0.20 m (Case C) and same horizontal space of 0.16 m. Heating performance in winter season was tested with different inlet temperatures of 25℃, 30℃, 35℃ and 40℃ during the entire measurement period. Overall, the surface temperature of the concrete HHPs remained above 3℃ in all experimental conditions applied in this study. The results of the surface temperature measurement with respect to the pipe depth showed that Case B was the highest among the three cases. However, the closer the circulating water pipe was to the pavement surface, the greater the heat exchange rate. This results is considered that the heat is continuously accumulated inside the pavements and then the temperature inside the pavements increases, while the amount of heat dissipation decreases as the temperature difference between the inlet and outlet of circulating water decreases. In this preliminary test the applicability of the concrete HHP on road deicing was confirmed. Finally, the results can be used as a basis for studying the effects of various variables on road pavements through numerical analysis and for conducting large-scale empirical experiments.

Rheological Characteristics of Magnetic $\gamma$-$Fe_{2}O_{3}$ and $CrO_2$ Particle Suspension (자성 $\gamma$-$Fe_{2}O_{3}$$CrO_2$ 입자 분산액의 유변특성 연구)

  • 김철암;이준석;최형진
    • The Korean Journal of Rheology
    • /
    • v.11 no.2
    • /
    • pp.128-134
    • /
    • 1999
  • Rheological characterization was examined for two different types of magenetic particle (rod-like $\gamma$-$Fe_{2}O_{3}$, $CrO_2$ )suspension in this study. The measured suspension viscosity (viscosity vs. concentration or shear rate) is used to obtain the dependence of viscous energy dissipation on the microstructural states of magnetic particle dispersions as well as the microstructural shape effects which are related to magnetic particle orientation. The empirical formulas from mean field theory and the Mooney equation are used to relate suspension viscosity to particle concentration. Intrinsic viscosities of these two different types of rod-like magnetic particle suspensions are found to exceed the prediction of hydrodynamic theory for dilute suspensions and support the existence of flocs containing significant amounts of immobilized suspending medium due to native attraction forces among particles in the microstructures.

  • PDF

Design of 8bit current steering DAC for stimulating neuron signal (뉴런 신호 자극을 위한 8비트 전류 구동형 DAC)

  • Park, J.H.;Shi, D.;Yoon, K.S.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.7 no.2
    • /
    • pp.13-18
    • /
    • 2013
  • In this paper design a 8 bit Current Steering D/A Converter for stimulating neuron signal. Proposed circuit in paper shows the conversion rate of 10KS/s and the power supply of 3.3V with 0.35um Magna chip CMOS process using full custom layout design. It employes segmented structure which consists of 3bit thermometer decoders and 5bit binary decoder for decreasing glitch noise and increasing resolution. So glitch energy is down by $10nV{\bullet}sec$ rather than binary weighted type DAC. And it makes use of low power current stimulator because of low LSB current. And it can make biphasic signal by connecting with Micro Controller Unit which controls period and amplitude of signal. As result of measurement INL is +0.56/-0.38 LSB and DNL is +0.3/-0.4 LSB. It shows great linearity. Power dissipation is 6mW.

  • PDF

Synthesis and Evaluation of Variable Temperature-Electrical Resistance Materials Coated on Metallic Bipolar Plates (온도 의존성 가변 저항 발열체로 표면 처리된 금속 분리판 제조 및 평가)

  • Jung, Hye-Mi;Noh, Jung-Hun;Im, Se-Joon;Lee, Jong Hyun;Ahn, Byung Ki;Um, Sukkee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.73.1-73.1
    • /
    • 2010
  • For the successful cold starting of a fuel cell engine, either internal of external heat supply must be made to overcome the formation of ice from water below the freezing point of water. In the present study, switchable vanadium oxide compounds as variable temperature-electrical resistance materials onto the surface of flat metallic bipolar plates have been prepared by a dip-coating technique via an aqueous sol-gel method. Subsequently, the chemical composition and micro-structure of the polycrystalline solid thin films were analyzed by X-ray diffraction, X-ray fluorescence spectroscopy, and field emission scanning electron microscopy. In addition, it was carefully measured electrical resistance hysteresis loop over a temperature range from $-20^{\circ}C$ to $80^{\circ}C$ using the four-point probe method. The experimental results revealed that the thin films was mainly composed of Karelianite $V_2O_3$ which acts as negative temperature coefficient materials. Also, it was found that thermal dissipation rate of the vanadium oxide thin films partially satisfy about 50% saving of the substantial amount of energy required for ice melting at $-20^{\circ}C$. Moreover, electrical resistances of the vanadium-based materials converge on an extremely small value similar to that of pure flat metallic bipolar plates at higher temperature, i.e. $T{\geq}40^{\circ}C$. As a consequence, experimental studies proved that it is possible to apply the variable temperature-electrical resistance material based on vanadium oxides for the cold starting enhancement of a fuel cell vehicle and minimize parasitic power loss and eliminate any necessity for external equipment for heat supply in freezing conditions.

  • PDF

An Efficient Lighting Control System Design for LSDM Control on AVR (AVR 기반의 LSDM 제어를 위한 효율적인 점등제어 시스템 설계)

  • Hong, Sung-Il;Lin, Chi-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.5
    • /
    • pp.116-124
    • /
    • 2012
  • In this paper, we propose an efficient lighting control system design for AVR based LSDM control. This paper, an efficient lighting control system design for LSDM control be design divided as the signal control part for I/O data bus and the timer/counter part for clock signal control according to operating conditions. LSDM control logic be optimization to PORTx and DDRx register by specifying the logical value of each bit for effective control signal processing. And, the LSDM control signal by lighting control program execution of ATmega128 be designed to be LSDM lighting control by control logic operating. In this paper, a proposed lighting control system were measured to power loss rate to proved the power loss reduction about lighting status of LSDM control logic by download the lighting control program to system through serial from host PC. As a measurement result, a proposed lighting control system than the existing lighting control system were proved to be effective to the overall power consumption reduction.

A Study on the Helical Gear Forming by Cold Extrusion (냉간 압출에 의한 헬리컬 기어의 제조에 관한 연구)

  • 최재찬;조해용;권혁홍;한진철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.127-138
    • /
    • 1991
  • A gear forming method by cold extrusion and an analytical method with its numerical solution program based on the upper bound method were developed. In the analysis the involute curve was as a shape of die and the upper bound method was used to calculate energy dissipation rate. By this method the power requirement and optimum conditions necessary for extruding helical(spur) gear were successfully calculated. These numerical solutions are in good agreement with experimental data. In the experiment, 4-6 class helical gear of KS standard for automobile transmission was successfully manufactured.

Consolidation Characteristics of Soft Ground with Artesian Pressure (피압에 따른 연약지반의 압밀 거동)

  • Yun, Daeho;Kim, Jaehong;Kim, Yuntae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.2
    • /
    • pp.31-39
    • /
    • 2016
  • Vertical drain has usually been used to accelerate the consolidation of soft clay deposits with high moisture content. Busan thick clay deposits are subjected to artesian pressure from an aquifer in sand and gravel layers. However, effect of artesian pressure existing in drainage-installed soft ground on consolidation behaviors is not well known. This paper investigates the consolidation behavior of drainage-installed soft ground at the Nakdong river estuary with artesian pressure and without artesian pressure. A series of one-dimensional large size column test was carried out to find out the consolidation characteristics of clay. Test results indicated that total settlement of clay with artesian pressure was higher than that without artesian pressure because effective stress decreased due to upward flow. Dissipation rate of excess pore water pressure delayed and excess pore water pressure did not fully dissipate in clay layer with artesian pressure. Undrained shear strength of clay ground with artesian pressure was lower than that without artesian pressure.

Numerical Analysis on Effect of Permeability and Reinforcement Length (Drainage Path) in Reinforced Soil (보강토에서의 투수성과 보강재길이(배수거리)의 영향에 대한 수치해석)

  • Lee, Hong-Sung;Hwang, Young-Cheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.3
    • /
    • pp.59-65
    • /
    • 2007
  • Excess pore pressures in low permeability soils may not dissipate quickly enough and decrease the effective stresses inside the soil, which in turn may cause a reduction of the shear strength at the interface between the soil and the reinforcement in MSE walls. For this condition the dissipation rate of pore pressures is most important and it varies depending on wall size, permeability of the backfill, and reinforcement length. In this paper, a series of numerical analysis has been performed to investigate the effect of those factors. The results show that for soils with a permeability lower than $10^{-3}cm/sec$, the consolidation time gradually increases. The increase in consolidation time indicates the decrease in effective stress thus it will result in decrease in pullout capacity of the reinforcement as verified by the numerical analyses. It is also observed that larger consolidation time is required for longer reinforcement length (longer drainage path).

  • PDF

COSMIC RAY SPECTRUM IN SUPERNOVA REMNANT SHOCKS

  • Kang, Hye-Sung
    • Journal of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.25-39
    • /
    • 2010
  • We perform kinetic simulations of diffusive shock acceleration (DSA) in Type Ia supernova remnants (SNRs) expanding into a uniform interstellar medium (ISM). Bohm-like diffusion due to self-excited $Alfv\acute{e}n$ waves is assumed, and simple models for $Alfv\acute{e}nic$ drift and dissipation are adopted. Phenomenological models for thermal leakage injection are considered as well. We find that the preshock gas temperature is the primary parameter that governs the cosmic ray (CR) acceleration efficiency and energy spectrum, while the CR injection rate is a secondary parameter. For SNRs in the warm ISM of $T_0\lesssim10^5K$, if the injection fraction is $\xi\gtrsim10^{-4}K$, the DSA is efficient enough to convert more than 20% of the SN explosion energy into CRs and the accelerated CR spectrum exhibits a concave curvature flattening to $E^{-1.6}$, which is characteristic of CR modified shocks. Such a flat source spectrum near the knee energy, however, may not be reconciled with the CR spectrum observed at Earth. On the other hand, SNRs in the hot ISM of$T_{0}\approx10^{6}K$ with a small injection fraction, $\xi$<$10^{-4}$, are inefficient accelerators with less than 10% of the explosion energy getting converted to CRs. Also the shock structure is almost test-particle like and the ensuing CR spectrum can be steeper than $E^{-2}$. With amplified magnetic field strength of order of $30{\mu}G$ $Alfv\acute{e}n$ waves generated by the streaming instability may drift upstream fast enough to make the modified test-particle power-law as steep as $E^{-2.3}$, which is more consistent with the observed CR spectrum.