• Title/Summary/Keyword: dissipation curve

Search Result 141, Processing Time 0.023 seconds

Evaluation of the Degree of Consolidation using Settlement and Excessive Pore Water Pressure (침하량과 간극수압에 의한 압밀도의 평가(지반공학))

  • 이달원;임성훈;윤제식;김지문
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.444-450
    • /
    • 2000
  • This study was performed to analyze the degree of consolidation by the dissipation of excessive pore water pressure and final settlement prediction methods of the very soft clay. Hyperbolic method, Asaoka method and curve fitting method were used to compute the degree of consolidation. The degree of consolidation with excessive pore water pressure were used to compute, which considered the dissipation time with embankment construction. The degree of consolidation that was obtained by the peak excessive pore water pressure was less than in the case of the dissipation excessive pore water pressure. And, the degree of consolidation by the total settlement was nearly the same value that of layer settlement. The degree of consolidation that was obtained by excessive pore water pressure was larger than in the case of the settlement.

  • PDF

Seismic Performance of Precast Concrete Large Panel Structures Subjected to Horizontal Cyclic Loading (반복 횡하중을 받는 프리캐스트 대형 판구조의 내진성능에 관한 연구)

  • Seo, Soo-Yeon;Lee, Li-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.3
    • /
    • pp.261-268
    • /
    • 1999
  • The seismic performance of precast concrete panel structures tested previously has been evaluated in this paper. Hysteretic curves of test specimens are idealized to elasto-plastic curves to get reliable yielding and ultimate displacements. For the idealized curves, ductility and energy dissipation capacity of specimens have been evaluated using a few guide lines. In addition, the strength capacity of specimens is checked for the strength demand caused by the design earthquake load including overturning moment effects. The result shows while the strength of specimen with joint box for vertical continuity is little bit lower than that of specimen connected by welding, the ductility of the former is higher than that of the latter. The energy dissipation ratios of PC specimens are ranged from 83% to 96% of that of Re specimen and the average of those are shown 90%.

  • PDF

Experimental and analytical study of steel slit shear wall

  • Khatamirad, Milad;Shariatmadar, Hashem
    • Steel and Composite Structures
    • /
    • v.24 no.6
    • /
    • pp.741-751
    • /
    • 2017
  • A steel slit shear wall has vertical slits and when it is under lateral loads, the section between these slits has double-curvature deformation, and by forming a flexural plastic hinge at the end of the slit, it dissipates the energy on the structure. In this article, Experimental, numerical and analytical analyses are performed to study the effect of slit shape and edge stiffener on the behavior of steel slit shear wall. Seismic behavior of three models with different slit shapes and two models with different edge stiffener shapes are studied and compared. Hysteresis curves, energy dissipation, out of plane buckling, initial stiffness and strength are discussed and studied. The proposed slit shape reduces the initial stiffness, increases the strength and energy dissipation. Also, edge stiffener shape increases the initial stiffness significantly.

Hydrodynamic performance of a vertical slotted breakwater

  • George, Arun;Cho, Il Hyoung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.468-478
    • /
    • 2020
  • The wave interaction problem with a vertical slotted breakwater, consisting of impermeable upper, lower parts and a permeable middle part, has been studied theoretically. An analytical model was presented for the estimation of reflection and transmission of monochromatic waves by a slotted breakwater. The far-field solution of the wave scattering involving nonlinear porous boundary condition was obtained using eigenfunction expansion method. The empirical formula for drag coefficient in the near-field, representing energy dissipation across the slotted barrier, was determined by curve fitting of the numerical solutions of 2-D channel flow using CFD code StarCCM+. The theoretical model was validated with laboratory experiments for various configurations of a slotted barrier. It showed that the developed analytical model can correctly predict the energy dissipation caused by turbulent eddies due to sudden contraction and expansion of a slotted barrier. The present paper provides a synergetic approach of the analytical and numerical modelling with minimum CPU time, for better estimation of the hydrodynamic performance of slotted breakwater.

Effect of vertical reinforcement connection level on seismic behavior of precast RC shear walls: Experimental study

  • Yun-Lin Liu;Sushil Kumar;Dong-Hua Wang;Dong Guo
    • Earthquakes and Structures
    • /
    • v.26 no.6
    • /
    • pp.449-461
    • /
    • 2024
  • The vertical reinforcement connection between the precast reinforced concrete shear wall and the cast-in-place reinforced concrete member is vital to the performance of shear walls under seismic loading. This paper investigated the structural behavior of three precast reinforced concrete shear walls, with different levels of connection (i.e., full connection, partial connection, and no connection), subjected to quasi-static lateral loading. The specimens were subjected to a constant vertical load, resulting in an axial load ratio of 0.4. The crack pattern, failure modes, load-displacement relationships, ductility, and energy dissipation characteristics are presented and discussed. The resultant seismic performances of the three tested specimens were compared in terms of skeleton curve, load-bearing capacity, stiffness, ductility, energy dissipation capacity, and viscous damping. The seismic performance of the partially connected shear wall was found to be comparable to that of the fully connected shear wall, exhibiting 1.7% and 3.5% higher yield and peak load capacities, 9.2% higher deformability, and similar variation in stiffness, energy dissipation capacity and viscous damping at increasing load levels. In comparison, the seismic performance of the non-connected shear wall was inferior, exhibiting 12.8% and 16.4% lower loads at the yield and peak load stages, 3.6% lower deformability, and significantly lower energy dissipation capacity at lower displacement and lower viscous damping.

Capacity Evaluation of Steel Damper Attached to Outside of Frame (골조 외부에 부착한 강재댐퍼의 성능 평가)

  • Lee, Hyun-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.382-388
    • /
    • 2017
  • In this study, a basic study was carried out on the external strengthening method of public buildings. A steel damper is installed outside the specimen with a rocking wall and connected to the frame. Two specimens were fabricated, and the non-reinforced specimens utilized the existing results. As a result of evaluating the envelope curve, strength, stiffness and energy dissipation capacity, it was evaluated that the strength enhancement of the RW_P specimen externally reinforced plate damper was evaluated to be excellent. In addition, RW_S specimens with external S type damper shows a gentle envelop curve after maximum load, and it can be confirmed that the damper properly dissipates the seismic energy.

Energy-Based Hysteretic Models for R/C Members (에너지 소산능력에 기초한 철근콘크리트 부재의 이력모델)

  • Eom, Tae-Sung;Park, Hong-Gun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.5 s.39
    • /
    • pp.45-54
    • /
    • 2004
  • Since existing hysteretic models for R/C members focused on presenting the degrading stiffness using empirical equations based on experiments, they cannot accurately predict the energy dissipation capacity during cyclic loading. Recently, design equations which can evaluate the energy dissipation capacity of R/C members were developed. Based on those equations, in the present study, an energy-based hysteretic model for flexure-dominated R/C members was developed. The proposed model was devised to dissipate the same energy as the actual one dissipated during a complete load cycle. The proposed model represents the hysteretic behaviors of R/C members accompanied by stiffness degradation and pinching using primary and cyclic curves and six unloading/reloading rules. The proposed model was verified by comparisons with various experimental results. The energy-based hysteretic model can be used to develop computer programs for static and dynamic analysis/design because it is simple and easily applicable to numerical analysis.

Dynamic experimental study on single and double beam-column joints in steel traditional-style buildings

  • Xue, Jianyang;Qi, Liangjie;Yang, Kun;Wu, Zhanjing
    • Structural Engineering and Mechanics
    • /
    • v.63 no.5
    • /
    • pp.617-628
    • /
    • 2017
  • In order to study the failure mode and seismic behavior of the interior-joint in steel traditional-style buildings, a single beam-column joint and a double beam-column joint were produced according to the relevant building criterion of ancient architectural buildings and the engineering instances, and the dynamic horizontal loading test was conducted by controlling the displacement of the column top and the peak acceleration of the actuator. The failure process of the specimens was observed, the bearing capacity, ductility, energy dissipation capacity, strength and stiffness degradation of the specimens were analyzed by the load-displacement hysteresis curve and backbone curve. The results show that the beam end plastic hinge area deformed obviously during the loading process, and tearing fracture of the base metal at top and bottom flange of beam occurred. The hysteresis curves of the specimens are both spindle-shaped and plump. The ultimate loads of the single beam-column joint and double beam-column joint are 48.65 kN and 70.60 kN respectively, and the equivalent viscous damping coefficients are more than 0.2 when destroyed, which shows the two specimens have great energy dissipation capacity. In addition, the stiffness, bearing capacity and energy dissipation capacity of the double beam-column joint are significantly better than that of the single beam-column joint. The ductility coefficients of the single beam-column joint and double beam-column joint are 1.81 and 1.92, respectively. The cracks grow fast when subjected to dynamic loading, and the strength and stiffness degradation is also degenerated quickly.

Seismic performances of steel reinforced concrete bridge piers

  • Deng, Jiangdong;Liu, Airong;Yu, Qicai;Peng, Guoxing
    • Steel and Composite Structures
    • /
    • v.21 no.3
    • /
    • pp.661-677
    • /
    • 2016
  • The quasi static test of the steel reinforced concrete (SRC) bridge piers and rigid frame arch bridge structure with SRC piers was conducted in the laboratory, and the seismic performance of SRC piers was compared with that of reinforced concrete (RC) bridge piers. In the test, the failure process, the failure mechanism, hysteretic curves, skeleton curves, ductility coefficient, stiffness degradation curves and the energy dissipation curves were analyzed. According to the $M-{\Phi}$ relationship of fiber section, the three-wire type theoretical skeleton curve of the lateral force and the pier top displacement was proposed, and the theoretical skeleton curves are well consistent with the experimental curves. Based on the theoretical model, the effects of the concrete strength, axial compression ratio, slenderness ratio, reinforcement ratio, and the stiffness ratio of arch to pier on the skeleton curve were analyzed.

Axial compression performance of basalt-fiber-reinforced recycled-concrete-filled square steel tubular stub column

  • Zhang, Xianggang;Gao, Xiang;Wang, Xingguo;Meng, Ercong;Wang, Fang
    • Advances in concrete construction
    • /
    • v.10 no.6
    • /
    • pp.559-571
    • /
    • 2020
  • This study aimed to inspect the axial compression mechanical performance of basalt-fiber-reinforced recycled - concrete (BFRRC)-filled square steel tubular stub column. The replacement ratio of recycled coarse aggregate (RCA) and the basalt fiber (BF) dosage were used as variation parameters, and the axial compression performance tests of 15 BFRRC-filled square steel tubular stub column specimens were conducted. The failure mode and the load-displacement/strain curve of the specimen were measured. The working process of the BFRRC-filled square steel tubular stub column was divided into three stages, namely, elastic-elastoplasticity, sudden drawdown, and plasticity. The influence of the design parameters on the peak bearing capacity, energy dissipation performance, and other axial compression performance indexes was discussed. A mathematical model of segmental stiffness degradation was proposed on the basis of the degradation law of combined secant-stiffness under axial compression. The full-process curve equation of axial compressive stress-strain was proposed by introducing the influencing factors, including the RCA replacement ratio and the BF dosage, and the calculated curve agreed well with the test-measured curve.