• Title/Summary/Keyword: display manufacturing

Search Result 695, Processing Time 0.035 seconds

Through Flow Technology;Enabling Highly Reliable Inkjet Manufacturing of Flat Panel Displays

  • Attard, John
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.373-375
    • /
    • 2007
  • Through Flow Technology offers unparalleled advantages for the manufacturing of flat panel displays using inkjet technology, including: outstanding reliability, self-maintenance, selfpriming and simple set up. The Xaar 1001 GS6 is the first product incorporating this technology. The concept and test results will be presented.

  • PDF

Small molecule interlayer for solution processed phosphorescent organic light-emitting device

  • Park, Tae-Jin;Park, Jung-Joo;Kim, Gyeong-Heon;Jeon, Woo-Sik;Pode, Ramchandra;Jang, Jin;Kwon, Jang-Hyuk
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.928-931
    • /
    • 2008
  • Using 4,4'4"-tris(N-carbazolyl)-triphenylamine (TCTA) small molecule interlayer, we have fabricated efficient green PHOLED by solution process. The maximum current and power efficiency values of 33.7 cd/A and 19.6 lm/W are demonstrated, respectively. Results reveal a way to fabricate the PHOLED using TCTA interlayer by solution process, promising for efficient and simple manufacturing.

  • PDF

Types & Characteristics of Chemical Substances used in the LCD Panel Manufacturing Process (LCD 제조공정에서 사용되는 화학물질의 종류 및 특성)

  • Park, Seung-Hyun;Park, Hae Dong;Ro, Jiwon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.3
    • /
    • pp.310-321
    • /
    • 2019
  • Objectives: The purpose of this study was to investigate types and characteristics of chemical substances used in LCD(Liquid crystal display) panel manufacturing process. Methods: The LCD panel manufacturing process is divided into the fabrication(fab) process and module process. The use of chemical substances by process was investigated at four fab processes and two module processes at two domestic TFT-LCD(Thin film transistor-Liquid crystal display) panel manufacturing sites. Results: LCD panels are manufactured through various unit processes such as sputtering, chemical vapor deposition(CVD), etching, and photolithography, and a range of chemicals are used in each process. Metal target materials including copper, aluminum, and indium tin oxide are used in the sputtering process, and gaseous materials such as phosphine, silane, and chlorine are used in CVD and dry etching processes. Inorganic acids such as hydrofluoric acid, nitric acid and sulfuric acid are used in wet etching process, and photoresist and developer are used in photolithography process. Chemical substances for the alignment of liquid crystal, such as polyimides, liquid crystals, and sealants are used in a liquid crystal process. Adhesives and hardeners for adhesion of driver IC and printed circuit board(PCB) to the LCD panel are used in the module process. Conclusions: LCD panels are produced through dozens of unit processes using various types of chemical substances in clean room facilities. Hazardous substances such as organic solvents, reactive gases, irritants, and toxic substances are used in the manufacturing processes, but periodic workplace monitoring applies only to certain chemical substances by law. Therefore, efforts should be made to minimize worker exposure to chemical substances used in LCD panel manufacturing process.

Manufacturing Large-scale SiNx EUV Pellicle with Water Bath (물중탕을 이용한 대면적 SiNx EUV 펠리클 제작)

  • Kim, Jung Hwan;Hong, Seongchul;Cho, Hanku;Ahn, Jinho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.1
    • /
    • pp.17-21
    • /
    • 2016
  • EUV (Extreme Ultraviolet) pellicle which protects a mask from contamination became a critical issue for the application of EUV lithography to high-volume manufacturing. However, researches of EUV pellicle are still delayed due to no typical manufacturing methods for large-scale EUV pellicle. In this study, EUV pellicle membrane manufacturing method using not only KOH (potassium hydroxide) wet etching process but also a water bath was suggested for uniform etchant temperature distribution. KOH wet etching rates according to KOH solution concentration and solution temperature were confirmed and proper etch condition was selected. After KOH wet etching condition was set, $5cm{\times}5cm$ SiNx (silicon nitride) pellicle membrane with 80% EUV transmittance was successfully manufactured. Transmittance results showed the feasibility of wet etching method with water bath as a large-scale EUV pellicle manufacturing method.

Fabrication of the mode (Reflective and Transmissive) switchable LCD

  • Jeong, Ho-Young;Kim, Dong-Sup;Jung, Gang-Seob;Moon, Jong-Won;Lee, Kyung-Ha;Lee, Deuk-Su;Yang, Myung-Su;Ahn, In-Ho;Kang, In-Byeong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.587-589
    • /
    • 2009
  • The mode (reflective and transmissive) switchable LCD has been developed by using a treated SR (Selective Reflector) polarizer. We believe that our approach will be a solution to overcome weak points for a reflective and transflective mode in a dark environment and a transmissive mode in a bright environment. Therefore, this can minimize power consumption, and also be easily fabricated in a current manufacturing process, ready for large sizes.

  • PDF

Application of Inkjet Technology in Flat Panel Display

  • Ryu, Beyong-Hwan;Choi, Young-Min
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.913-918
    • /
    • 2005
  • It is expected that the inkjet technology offers prospect for reliable and low cost manufacturing of FPD (Flat Panel Display). This inkjet technology also offers a more simplified manufacturing process for various part of the FPD than conventional process. For example, recently the novel manufacturing processes of color filter (C/F) in LCD, or RGB patterning in OLED by inkjet printing method have been developed. This elaborates will be considered as the precious point of manufacturing process for the mass production of enlarged-display panel with a low price. On this point of view, we would like to review the status of inkjet technology in FPD, with some results on forming micro line by inkjet patterning of suspension type silver nano ink as below. We have studied the inkjet patterning of synthesized aqueous silver nano-sol on interface-controlled ITO glass substrate. Furthermore, we designed the conductive ink for direct inkjet patterning on bare ITO glass substrate. The first, the highly concentrated polymeric dispersant-assisted silver nano sol was prepared. The high concentration of batch-synthesized silver nano sol was possible to 40 wt%. At the same time the particle size of silver nanoparticles was below $10{\sim}20nm$. The second, the synthesized silver nano sol was inkjet - patterned on ITO glass substrate. The connectivity and width of fine line depended largely on the wettability of silver nano sol on ITO glass substrate, which was controlled by surfactant. The relationship was understood by wetting angle. The line of silver electrode as fine as $50{\sim}100\;{\mu}m$ was successfully formed on ITO glass substrate. The last, the direct inkjet-patternable silver nano sol on bare ITO glass substrate was designed also.

  • PDF

Investigation of Asymmetric Aspherical Triangular Prism Optical System for Video Information Display (영상정보디스플레이용 비대칭 비구면 삼각 프리즘 광학계 연구)

  • Youn, Gap-Suck;Yoo, Kyung-Sun;Hyun, Dong-Hoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.6
    • /
    • pp.590-595
    • /
    • 2014
  • We have investigated anamorphic prism lenses with distortions of 0.3-0.5%. We designed the plastic triangular lens and confirmed the minimum resolution using MTF graphs. Also we confirmed that the SVGA optical system can realize a resolution of $864{\times}648$ 56 megapixels. A distortion of about 0.5% aberration appears in the maximum field, and a finite beam aberration of about $15{\mu}m$ is confirmed. We made a mold based on the design data and completed the prism lens through exodus molding. We confirmed the shape error (< $30{\mu}m$) and surface roughness (> 40 nm) of the three sides. We made the video-information-display prototype glasses using prism lens by measuring the performance, we determined the distortion aberration (0.3%) and SVGA resolution. Our approach will enable fabrication of a portable large-screen display device for glasses and sunglasses for the domestic market and, after 2015, for the world market.

Direct Fabrication of a-Si:H Thin Film Transistor Arrays on Flexible Substrates: Critical Challenges and Enabling Solutions

  • O'Rourke, Shawn M.;Loy, Douglas E.;Moyer, Curt;Bawolek, Edward J.;Ageno, Scott K.;O'Brien, Barry P.;Marrs, Michael;Bottesch, Dirk;Dailey, Jeff;Naujokaitis, Rob;Kaminski, Jann P.;Allee, David R.;Venugopal, Sameer M.;Haq, Jesmin;Colaneri, Nicholas;Raupp, Gregory B.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1459-1462
    • /
    • 2008
  • In this paper we describe solutions to address critical challenges in direct fabrication of amorphous silicon thin film transistor (TFTs) arrays for active matrix flexible displays. For all flexible substrates a manufacturable handling protocol in automated display-scale equipment is required. For metal foil substrates the principal challenges are planarization and electrical isolation, and management of stress (CTE mismatch) during TFT fabrication. For plastic substrates the principal challenge is dimensional instability management.

  • PDF

Manufacturing a Single Cell Gap Transflective Liquid Crystal Display by Using Ink Jet Printing Technology

  • Sha, Y.A.;Su, P.J.;Hsieh, C.H.;Chang, K.H.;Chen, C.H.;Hsiao, C.C.;Shiu, J.W.;Fuh, S.Y.;Cheng, W.Y.;Liao, Y.C.;Yang, J-C;Lo, K.L.;Lee, D.W.;Lee, K.C.;Chang, Y.P.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1533-1536
    • /
    • 2006
  • A novel single cell gap transflective liquid crystal display was developed. By using the ink jet printing technology, we fabricated a transflective liquid crystal display with the hybrid alignment in the reflective region and the homogeneous alignment in the transmission region. Compared with the traditional technologies, our technology provided the advantages of easy process, high yield, fast throughput, and less material usage. We also applied this technology to the 2.4 inch prototype. This panel could be implemented in the handheld product applications.

  • PDF

FOS improvement through the growth speed increase of A-Si layer in TFT process

  • Kim, Pyung-Hun;Kang, I.B.;Lee, Eui-Wan;Jung, Ji-Man;Gil, W.S.;Lee, Hyung-Gi;Lee, Y.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1040-1043
    • /
    • 2004
  • As time goes by, the market demand increases and each LCD panel manufacturing company makes every effort to produce more panels in a limited time. It is necessary to reduce the cost and time of production for the improvement of productivity in manufacturing companies. The increased speed of thin films growth used in the TFT process brings improvement of productivity but it is also accompanied by a drop in display quality due to a characteristic change of the thin film. So in our dissertation, we deal with the increased speed of a-Si layer growth and the proportioned a drop in characteristic quality. We discuss a drop in display quality by a characteristic change of a-Si layer and we propose a counter-plan through panel design improvement. We have already applied our plan to the 15" XGA panel and confirmed the improved result.

  • PDF