• Title/Summary/Keyword: display driving

Search Result 755, Processing Time 0.028 seconds

An RGB to RGBY Color Conversion Algorithm for Liquid Crystal Display Using RGW Pixel with Two-Field Sequential Driving Method

  • Hong, Sung-Jin;Kwon, Oh-Kyong
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.777-782
    • /
    • 2014
  • This paper proposes an RGB to RGBY color conversion algorithm for liquid crystal display (LCD) using RGW pixel structure with two-field (yellow and blue) sequential driving method. The proposed algorithm preserves the hue and saturation of the original color by maintaining the RGB ratio, and it increases the luminance. The performance of the proposed RGBY conversion algorithm is verified using the MATLAB simulation with 24 images of Kodak lossless true color image suite. The simulation results of average color difference CIEDE2000 (${\delta}E^*_{00}$) and scaling factor are 0.99 and 1.89, respectively. These results indicate that the average brightness is increased 1.89 times compared to LCD using conventional RGB pixel structure, without increasing the power consumption and degrading the image quality.

On the Cell Structure and Driving Method for High Efficiency Plasma Display Panel

  • Lee, Ho-Jun;Ok, Jung-Woo;Lee, Don-Kyu;Lee, Ji-Hoon;Lee, Hae-June;Kim, Dong-Hyun;Park, Chung-Hoo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1479-1482
    • /
    • 2006
  • Potentials and advantages of recently proposed raised bus electrode plasma display panel is discussed in terms of luminous efficiency, addressing speed. Detailed experimental and simulation results, which shows mechanisms of high efficiency driving mechanism, will also be given. Apart from the cell structure, we introduce new high efficiency driving method that can be applicable to conventional ac Plasma Display Panel.

  • PDF

Data Supply Voltage Reduction Scheme for Low-Power AMOLED Displays

  • Nam, Hyoungsik;Jeong, Hoon
    • ETRI Journal
    • /
    • v.34 no.5
    • /
    • pp.727-733
    • /
    • 2012
  • This paper demonstrates a new driving scheme that allows reducing the supply voltage of data drivers for low-power active matrix organic light-emitting diode (AMOLED) displays. The proposed technique drives down the data voltage range by 50%, which subsequently diminishes in the peak power consumption of data drivers at the full white pattern by 75%. Because the gate voltage of a driving thin film transistor covers the same range as a conventional driving scheme by means of a level-shifting scheme, the low-data supply scheme achieves the equivalent dynamic range of OLED currents. The average power consumption of data drivers is reduced by 60% over 24 test images, and power consumption is kept below 25%.

Optimized Gate Driving to Compensate Feed-through Voltage for $C_{ST}-on-Common$

  • Jung, Soon-Shin;Yun, Young-Jun;Park, Jae-Woo;Roh, Won-Yeol;Choi, Jong-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.73-74
    • /
    • 2000
  • In recent years, attempts have been made to greatly improve the display quality of active-matrix liquid crystal display devices, and many techniques have been proposed to solve such problems as gate signal delay, feed-through voltage and image sticking[1-3]. To improve these problems which are caused by the feed-through voltage, we have evaluated new driving methods to reduce the feed-through voltage. Two level gate-pulse was used for the gate driving of the cst-on-common structure pixels. These gate driving methods offer better feed-through characteristics than conventional simple gate pulse. Optimized step signal will compensate by step pulse time and voltage. The evaluation of the suggested driving methods were performed by using a TFT-LCD array simulator PDAST which can simulate the gate, data and pixel voltages of a certain pixel at any time and at any location on a TFT array. The effect of the new driving method was effectively analyzed.

  • PDF

Preference of Center Information Display Size and Location-based on Autonomous Driving Level (자율주행 단계별 센터페시아 디스플레이 크기 및 위치에 대한 선호도)

  • Kwon, Ju Yeong;Jeong, So Yon;Ju, Da Young
    • Journal of the HCI Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.45-52
    • /
    • 2019
  • As the requirement of the in vehicle infotainment service increases, the role of the in vehicle display is also expected to rise. Particularly, center information display(CID) is expected to be actively utilized, and since the size and position of the display is anticipated to change, it is necessary to research based on the users' perspective. However, there are limited research studies that investigated the user's consciousness on the size and position of autonomous vehicle display. Herein, the purpose of this study is to identify and present the preference of the center information display's size and position on each levels of driving automation. For this, an experiment on the driving simulator was conducted using the think-aloud method. As a result, it was found that the horizontal display(12.5inch) on the top position was the most preferred in the second level of the driving automation. On level three, the participants significantly preferred the vertical display(17inches) compared to the second level. This study is significant since it conducted an empirical study which examines the user' preference of CID using a driving simulator for the autonomous vehicle.

Recent Development of Optically Compensated Bend (OCB) Mode TFT-LCD

  • Wakemoto, Hirofumi;Nishiyama, Kazuhiro;Nakao, Kenji;Takimoto, Akio
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.562-566
    • /
    • 2005
  • Toshiba Matsushita Display Technology (TMD) has firstly succeeded in mass production of OCB (Optically Compensated Bend) mode liquid crystal display panels which have excellent moving picture quality almost the same as CRT. We have newly developed 32 -inch diagonal HD ($1366{\times}768\;pixels$) panels using OCB mode and low temperature p-Si TFT (LTPS) array substrates. High performance of brightness of $600cd/m^2$ and contrast ratio of 600 : 1 was obtained by using pseudo-impulse driving method to insert a black period between continuous two frames, and also by using blinking backlight method. Furthermore, moving picture response time (MPRT) 6.5ms has been obtained by optimization of black insert driving and backlight blinking, without the great sacrifices of contrast ratio and luminance.

  • PDF

Super-multiview windshield display for driving assistance

  • Urano, Yohei;Kashiwada, Shinji;Ando, Hiroshi;Nakamura, Koji;Takaki, Yasuhiro
    • Journal of Information Display
    • /
    • v.12 no.1
    • /
    • pp.43-46
    • /
    • 2011
  • A three-dimensional windshield display (3D-WSD) can present driving information at the same depth as the objects in the outside scene. Herein, a super-multiview 3D-WSD is proposed because the super-multiview display technique provides smooth motion parallax. Motion parallax is the only physiological cue for perceiving the depth of a 3D image displayed at a far distance, which cannot be perceived by vergence and binocular parallax. A prototype system with 36 views was constructed, and the discontinuity of motion parallax and accuracy of depth perception were evaluated.

New Driving Method for Fast Addressing of AC-Plasma Display Panel

  • Kim, Gun-Su;Choi, Hoon-Young;Lee, Seok-Hyun;Seo, Jeong-Hyun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.726-729
    • /
    • 2003
  • A new driving method is proposed to reduce the address period. The scan time of new driving method overlaps with the next scan time during the discharge lag time. Thus, without reducing the address pulse width and the scan pulse width, the new addressing method can reduce the address period. The results show that the scan time of about 100ns ${\sim}$ 300ns can be overlapped without the misfiring,.

  • PDF

Hardware architecture of a wavelet based multiple line addressing driving system for passive matrix displays

  • Lam, San;Smet, Herbert De
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.802-805
    • /
    • 2007
  • A hardware architecture is presented of a wavelet based multiple line addressing driving scheme for passive matrix displays using the FPGA (Field Programmable Gate Arrays), which will be integrated in the scalable video coding $architecture^{[1]}$. The incoming compressed video data stream will then directly be transformed to the required column voltages by the hardware architecture without the need of employing the video decompression.

  • PDF