• Title/Summary/Keyword: displacement-based seismic design

Search Result 306, Processing Time 0.021 seconds

Evaluation of Seismic Response of Multi-Story Frames for Multiple Ground Excitations (다중 가진에 대한 구조물의 지진응답 평가)

  • Choi, Hyun-Hoon;Christopoulos, C.;Kim, Jin-Koo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.6
    • /
    • pp.35-45
    • /
    • 2008
  • To investigate the effects of residual displacement, the structural responses of buckling-restrained braced frames (BRBF) and special moment-resisting frames (SMRF) were evaluated for design-based excitations following an application of initial residual drift. The initial residual drift was applied to the structure in two ways. The first way was to simply apply the same earthquake record to the structure twice, with an appropriate pause between applications to allow the structural response from the first record to return to zero. The second way to apply the initial residual drift was to apply a pushover to the structure until it arrives at the desired residual drift value. According to the analysis results, the initial residual drifts had a significant effect on the responses of steel BRBF and SMRF. The responses of BRBF were more highly dependent on the initial residual deformation than the responses of SMRF. Therefore, in order to minimize the post-event repair cost, a reduction of residual drift is required.

Probabilistic evaluation of separation distance between two adjacent structures

  • Naeej, Mojtaba;Amiri, Javad Vaseghi;Jalali, Sayyed Ghasem
    • Structural Engineering and Mechanics
    • /
    • v.67 no.5
    • /
    • pp.427-437
    • /
    • 2018
  • Structural pounding is commonly observed phenomenon during major ground motion, which can cause both structural and architectural damages. To reduce the amount of damage from pounding, the best and effective way is to increase the separation distance. Generally, existing design procedures for determining the separation distance between adjacent buildings subjected to structural pounding are based on approximations of the buildings' peak relative displacement. These procedures are based on unknown safety levels. The aim of this research is to estimate probabilistic separation distance between adjacent structures by considering the variability in the system and uncertainties in the earthquakes characteristics through comprehensive numerical simulations. A large number of models were generated using a robust Monte-Carlo simulation. In total, 6.54 million time-history analyses were performed over the adopted models using an ensemble of 25 ground motions as seismic input within OpenSees software. The results show that a gap size of 50%, 70% and 100% of the considered design code for the structural periods in the range of 0.1-0.5 s, leads to have the probability of pounding about 41.5%, 18% and 5.8%, respectively. Finally, based on the results, two equations are developed for probabilistic determination of needed structural separation distance.

A proposal of simple evaluation on the seismic performance of tunnel lining (터널 라이닝의 내진성능 간편 평가법 제안)

  • Ahn, Jae-Kwang;Byun, Yoseph;Lee, Gyuphil;Lee, Seongwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.361-374
    • /
    • 2018
  • The country has built and is operating IT-based integrated management system for efficient management of national highway tunnels used publicly these days. Since this system doesn't include the management function on earthquakes, it is impossible to promptly respond to earthquakes and to select the sections requiring seismic reinforcement. Tunnels designed and constructed after 1999 have been subjected to seismic design for an earthquake with a return period 1000 years. Therefore, it is necessary to evaluate the stability of structures in case of earthquakes more than this. Since it takes a lot of time to perform the stability evaluation on various earthquake magnitudes, a method that can easily evaluate earthquakes is needed. In this paper, the empirical simplification method that can easily evaluate the earthquake was proposed. For this, the study calculated ground displacement by conducting one-dimensional ground response analysis, and examined the safety of tunnels in the event of occurrence of an earthquake using two means of response displacement method (analytics and numerical analysis).

Cyclic tests on RC joints retrofitted with pre-stressed steel strips and bonded steel plates

  • Yu, Yunlong;Yang, Yong;Xue, Yicong;Wang, Niannian;Liu, Yaping
    • Structural Engineering and Mechanics
    • /
    • v.75 no.6
    • /
    • pp.675-684
    • /
    • 2020
  • An innovative retrofit method using pre-stressed steel strips and externally-bonded steel plates was presented in this paper. With the aim of exploring the seismic performance of the retrofitted RC interior joints, four 1/2-scale retrofitted joint specimens together with one control specimen were designed and subjected to constant axial compression and cyclic loading, with the main test parameters being the volume of steel strips and the existence of externally-bonded steel plates. The damage mechanism, force-displacement hysteretic response, force-displacement envelop curve, energy dissipation and displacement ductility ratio were analyzed to investigate the cyclic behavior of the retrofitted joints. The test results indicated that all the test specimens suffered a typical shear failure at the joint core, and the application of externally-bonded steel plates and that of pre-stressed steel strips could effectively increase the lateral capacity and deformability of the deficient RC interior joints, respectively. The best cyclic behavior could be found in the deficient RC interior joint retrofitted using both externally-bonded steel plates and pre-stressed steel strips due to the increased lateral capacity, displacement ductility and energy dissipation. Finally, based on the test results and the softened strut and tie model, a theoretical model for determining the shear capacity of the retrofitted specimens was proposed and validated.

Performance enhancement of base-isolated structures on soft foundation based on smart material-inerter synergism

  • Feng Wang;Liyuan Cao;Chunxiang Li
    • Earthquakes and Structures
    • /
    • v.27 no.1
    • /
    • pp.1-15
    • /
    • 2024
  • In order to enhance the seismic performance of base-isolated structures on soft foundations, the hybrid system of base-isolated system (BIS) and shape memory alloy inerter (SMAI), referred to as BIS+SMAI, is for the first time here proposed. Considering the nonlinear hysteretic relationships of both the isolation layer and SMA, and soil-structure interaction (SSI), the equivalent linearized state space equation is established of the structure-BIS+SMAI system. The displacement variance based on the H2 norm is then formulated for the structure with BIS+SMAI. Employing the particle swarm optimization, the optimization design methodology of BIS+SMAI is presented in the frequency domain. The evolvement rules of BIS+SMAI in the effectiveness, robustness, SMA driving force, inertia force, stroke, and damping enhancement effect are revealed in the frequency domain through changing the inerter-mass ratio, structural height, aspect ratio, and relative stiffness ratio between the soil and structure. Meanwhile, the validation of BIS+SMAI is conducted using real earthquake records. Results demonstrate that BIS+SMAI can effectively reduce the isolation layer displacement. The inerter can significantly increase the hysteretic displacement of SMA and thus enhance its energy dissipation capacity, implying that BIS+SMAI has better effectiveness than BIS+SMA. Although BIS+SMAI and BIS+ tuned inerter damper (TID) have practically the same effectiveness, BIS+SMAI has the lower optimum damping, significantly smaller inertia force, and higher robustness to perturbations of the optimum parameters. Therefore, BIS+SMAI can be used as a more engineering realizable hybrid system for enhancing the performance of base-isolated structures in soft soil areas.

The Study on Improvement Methods for The Seismic Performance of Port Structures (항만 구조물의 내진성능 향상을 위한 배면 지반의 보강방안에 관한 연구)

  • Kim, Byung-Il;Hong, Kang-Han;Kim, Jin-Hae;Han, Sang-Jae
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.151-165
    • /
    • 2019
  • In this study, the four types of improvement methods (increase self weight and reducing sliding force etc.) were proposed depending on install location with compaction grouting to improve seismic performance of existing port structure and optimal methods by analyzing the effects of improvement (stability, constructability and economy) by theoretical and numerical methods. From the dynamic time history analysis for artificial seismic waves, the results indicated that the horizontal displacement after improvement decreased compared to before improvement, however the displacement reduction effect among improvement methods was not significantly different. Slope stability based on the strength reduction method and the limit equilibrium analysis method, it is confirmed that the passive pile method is more safe than other methods. It is due to the shear strength at the failure surface is increased. In addition, the analysis of constructability and economy showed that the reduction of earth pressure method (type 02) and the passive pile method (type 03) are excellent. However, in the case of the passive pile method is concerned that there is a shortage of design cases and the efficiency can be reduced depend on various constraints such as ground conditions.

Dry Connections for Precast Shear Wall Systems (프리캐스트 전단벽 시스템의 건식접합부에 관한 연구)

  • Hong, Sung-Gul;Lim, Woo-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.530-533
    • /
    • 2006
  • This thesis investigates the behavior of precast wall systems with a new vertical connection which are proportioned by the displacement based design. The proposed precast wall systems are supposed to provide additional spaces and seismic strengthening in remodeling existing residential buildings. For a fast remodeling constructions using PC walls require an efficient, economic fabrication method. A C-type vertical connections for PC wall systems is proposed for transfer of bending moment between walls in the vertical direction while a shear key in the center of wall is prepared to transfer shear forces by bearing. The proposed vertical connection allows us easy fabrication because of different direction of slots at the edges of wall. The dimension of C-type connection components are determined by engineering models and a series of test.

  • PDF

Displacement Based Seismic Design of Asymmetric-Plan Wall Structures (비대칭 벽식구조의 변위에 근거한 내진설계)

  • 조봉호;홍성걸
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.251-259
    • /
    • 2001
  • 본 논문은 직접 변위 설계법의 기본개념을 이용하여 비대칭 평면을 갖는 벽 식구조의 변위에 근거한 내진설계방법을 제안한다. 제안된 설계방법은 구조시스템의 각 벽체의 강도비와 강성비 및 목적 설계 변위를 결정하고, 직접 변위 설계법에 따라 설계하중은 구하는 과정으로 이루어진다. 탄성 영역에서는 강성 편심을, 비탄성 영역에서는 강도 편심을 주요한 설계변수로 사용하였다 성능에 기초한 내진설계의 개념에 따라 비대칭 평면을 갖는 구조물이 요구되는 성능 수준을 효과적으로 만족할 수 있도록 본 논문은 시스템의 비틀림 미케니즘과 각 벽체의 변형능력을 고려하였다. 제안된 설계방법을 이용하여 중진과 강진 지역에 대해 예제 구조물의 설계하중을 구하고, 최적의 설계방법을 제안하였다.

  • PDF

Vibration Control Performance Evaluation of Semi-active Outrigger Damper System (준능동 아웃리거 댐퍼시스템의 진동제어 성능평가)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.4
    • /
    • pp.81-89
    • /
    • 2015
  • Damped outrigger systems have been proposed as a novel energy dissipation system to protect tall buildings from severe earthquakes and strong wind loads. In this study, semi-active damping devices such as magnetorheological (MR) dampers instead of passive dampers are installed vertically between the outrigger and perimeter columns to achieve large and adaptable energy dissipation. Control performance of semi-active outrigger damper system mainly depends on the control algorithm. Fuzzy logic control algorithm was used to generate command voltage sent to MR damper. Genetic algorithm was used to optimize the fuzzy logic controller. An artificial earthquake load was generated for numerical simulation. A simplified numerical model of damped outrigger system was developed. Based on numerical analyses, it has been shown that the semi-active damped outrigger system can effectively reduce both displacement and acceleration responses of the tall building in comparison with a passive outrigger damper system.

Flexural ductility of HSC members

  • Maghsoudi, A.A.;Bengar, H. Akbarzadeh
    • Structural Engineering and Mechanics
    • /
    • v.24 no.2
    • /
    • pp.195-212
    • /
    • 2006
  • In seismic areas, ductility is an important factor in design of high strength concrete (HSC) members under flexure. A number of twelve HSC beams with different percentage of ${\rho}$ & ${\rho}^{\prime}$ were cast and incrementally loaded under bending. The effect of ${\rho}^{\prime}$ on ductility of members were investigated both qualitatively and quantitatively. During the test, the strain on the concrete middle faces, on the tension and compression bars, and also the deflection at different points of the span length were measured up to failure. Based on the obtained results, the serviceability and ultimate behavior, and especially the ductility of the HSC members are more deeply reviewed. Also a comparison between theoretical and experimental results are reported here.