• Title/Summary/Keyword: displacement response estimation

Search Result 96, Processing Time 0.03 seconds

Probabilistic Distribution of Displacement Response of Frictionally Damped Structures under Earthquake Loads (지진하중을 받는 마찰형 감쇠를 갖는 구조물의 변위 응답 확률 분포)

  • Lee, Sang-Hyun;Park, Ji-Hun;Youn, Kyung-Jo;Min, Kyung-Won
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.639-644
    • /
    • 2007
  • The accurate peak response estimation of a seismically excited structure with frictional damping system(FDS) is very difficult since the structure with FDS shows nonlinear behavior dependent on the structural period, loading characteristics, and relative magnitude between the frictional force and the excitation load. Previous studies have estimated that by replacing a nonlinear system with an equivalent linear one or by employing the response spectrum obtained based on nonlinear time history and statistical analysis. In the case that on earthquake load is defined with probabilistic characteristics, the corresponding response of the structure with FDS has probabilistic distribution. In this study, nonlinear time history analyses were performed for the structure with FDS subjected to artificial earthquake loads generated using Kanai-Tajimi filter. An equation for the probability density function (PDF) of the displacement response is proposed by adapting the PDF of the normal distribution. Finally, coefficients of the proposed PDF is obtained by regression analysis of the statistical distribution of the time history responses. Finally, the correlation between PDFs and statistical response distribution is presented.

  • PDF

Estimation of Displacements Using the Transformed Response in Time and Frequency Domain

  • Jung, Beom-Seok
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.6 no.1
    • /
    • pp.44-50
    • /
    • 2003
  • If the accelerometers are used in measuring the response, the absolute values of the velocity and displacement are not usually obtainable because their initial values are not accounted for in the integration of the acceleration response. A new dynamic response conversion algorithm of both the time domain and the frequency domain is proposed for the problem in estimating the displacement data by defining the transformed responses. In this algorithm, the displacement response can be obtained from the measured acceleration records by integration without requiring the knowledge of the initial velocity and displacement information. The applicability of the technique is tested by an example problem using the real bridge's superstructure under several cases of moving load. In the response conversion procedure of the frequency domain, the identified response according to the frequency can be estimated by changing over the limits of integration. If the reliability of the identified responses is ensured, it is expected that the proposed method for estimating the impact factor can be useful in the bridge's dynamic test. This method can be useful in those practical cases when the direct measurement of the displacement is difficult as in the dynamic studies of huge structure.

  • PDF

Parametric Modelling of Uncoupled System (언커플시스템의 파라메트릭 모델링)

  • Yoon, Moon-Chul;Kim, Jong-Do;Kim, Kwang-Heui
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.3
    • /
    • pp.36-42
    • /
    • 2006
  • The analytical realization of uncoupled system was introduced in this study using times series and its spectrum analysis. The ARMAX spectra of time series methods were compared with the conventional FFT spectrum. Also, the response of second order system uncoupled was solved using the Runge-Kutta Gill method. In this numerical analysis, the displacement, velocity and acceleration were calculated. The displacement response among them was used for the power spectrum analysis. The ARMAX algorithm in time series was proved to be appropriate for the mode estimation and spectrum analysis. Using the separate response of first and second mode, each modes were calculated separately and the response of mixed modes was also analyzed for the mode estimation using several time series methods.

  • PDF

Performance-Based Seismic Design of Reinforced Concrete Building Structures Using Inelastic Displacements Criteria

  • Kabeyaswa, Toshimi
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.3
    • /
    • pp.61-71
    • /
    • 1998
  • A performance-based seismic design method for reinforced concrete building structures being developed in Japan is outlined. Technical and scientific background of the performance-based design philosophy as well as recently developed seismic design guidelines are is presented, in which maximum displacement response to design earthquake motion is used as the limit-state design criteria. A method of estimating dynamic response displacement of the structures based on static nonlinear analysis is described. A theoretical estimation of nonlinear dynamic response considering the characteristics of energy input to the system is described in detail, which may be used as the standard method in the new performance-based code. A desing philosophy not only satisfying the criteria but also evaluating seismic capacity of the structures is also introduced.

  • PDF

Application of Response Spectrum Analysis Method for the Estimation of the Vertical Vibration in Structures (구조물의 연직진동해석을 위한 응답 스펙트럼 해석법의 활용)

  • 이동근
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.12-19
    • /
    • 1998
  • Response spectrum analysis method is widely used for seismic analysis of building structure. Analysis of structural vibration for equipment, machine and moving loads are executed by time history analysis. This method is very complex, difficult and tedious. In this study, maximum response of structure for this case are simply and fast. calculated by mode shape and response spectrum for excitation. At first, Response spectrum and time history analysis for some earthquake is carried and investigate the error of maximum displacement response for R. S. A. Secondly, The process for response spectrum analysis in excitation are calculated, and maximum model response are combined by CQC (Complete Quadratic Combination) methods. Finally, Combining maximum displacement response is compared with one of time history analysis.

  • PDF

Bridge-vehicle coupled vibration response and static test data based damage identification of highway bridges

  • Zhu, Jinsong;Yi, Qiang
    • Structural Engineering and Mechanics
    • /
    • v.46 no.1
    • /
    • pp.75-90
    • /
    • 2013
  • In order to identify damage of highway bridges rapidly, a method for damage identification using dynamic response of bridge induced by moving vehicle and static test data is proposed. To locate damage of the structure, displacement energy damage index defined from the energy of the displacement response time history is adopted as the indicator. The displacement response time histories of bridge structure are obtained from simulation of vehicle-bridge coupled vibration analysis. The vehicle model is considered as a four-degree-of-freedom system, and the vibration equations of the vehicle model are deduced based on the D'Alembert principle. Finite element method is used to discretize bridge and finite element model is set up. According to the condition of displacement and force compatibility between vehicle and bridge, the vibration equations of the vehicle and bridge models are coupled. A Newmark-${\beta}$ algorithm based professional procedure VBAP is developed in MATLAB, and used to analyze the vehicle-bridge system coupled vibration. After damage is located by employing the displacement energy damage index, the damage extent is estimated through the least-square-method based model updating using static test data. At last, taking one simply supported bridge as an illustrative example, some damage scenarios are identified using the proposed damage identification methodology. The results indicate that the proposed method is efficient for damage localization and damage extent estimation.

An optimal regularization for structural parameter estimation from modal response

  • Pothisiri, Thanyawat
    • Structural Engineering and Mechanics
    • /
    • v.22 no.4
    • /
    • pp.401-418
    • /
    • 2006
  • Solutions to the problems of structural parameter estimation from modal response using leastsquares minimization of force or displacement residuals are generally sensitive to noise in the response measurements. The sensitivity of the parameter estimates is governed by the physical characteristics of the structure and certain features of the noisy measurements. It has been shown that the regularization method can be used to reduce effects of the measurement noise on the estimation error through adding a regularization function to the parameter estimation objective function. In this paper, we adopt the regularization function as the Euclidean norm of the difference between the values of the currently estimated parameters and the a priori parameter estimates. The effect of the regularization function on the outcome of parameter estimation is determined by a regularization factor. Based on a singular value decomposition of the sensitivity matrix of the structural response, it is shown that the optimal regularization factor is obtained by using the maximum singular value of the sensitivity matrix. This selection exhibits the condition where the effect of the a priori estimates on the solutions to the parameter estimation problem is minimal. The performance of the proposed algorithm is investigated in comparison with certain algorithms selected from the literature by using a numerical example.

Sub-pixel Evaluation with Frequency Response Analysis

  • OKAMOTO Koji
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2001.12a
    • /
    • pp.14-22
    • /
    • 2001
  • The frequency responses on the sub-pixel evaluation technique were investigated using the Monte-calro Simulation technique. The frequency response by the FFT based cross-correlation gives very good results, however, the gain loss does exist for the small displacement, (less than 0.5 pixel). While, the no gain loss is observed in the Direct Cross-correlation, however, the sub-pixel accuracy was limited to be about 0.1 pixel, i.e., it could not detect the small displacement. To detect the higher accurate sub-pixel displacement, the gradient based technique is the best. For the small interrogation area (e.g., 4x4), only the gradient technique can detect the small displacement correctly.

  • PDF

Probability Distribution of Displacement Response of Structures with Friction dampers Excited by Earthquake Loads Generated Using Kanai-Tajimi Filter (Kanai-Tajimi 필터 인공지진 가진된 마찰형 감쇠를 갖는 구조물의 변위 응답 확률분포)

  • Youn, Kyung-Jo;Park, Ji-Hun;Min, Kyung-Won;Lee, Sang-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.623-628
    • /
    • 2007
  • The accurate peak response estimation of a seismically excited structure with frictional damping system(FDS) is very difficult since the structure with FDS shows nonlinear behavior dependent on the structural period, loading characteristics, and relative magnitude between the frictional force and the excitation load. Previous studies have estimated that by replacing a nonlinear system with an equivalent linear one or by employing the response spectrum obtained based on nonlinear time history and statistical analysis. In the case that an earthquake load is defined with probabilistic characteristics, the corresponding response of the structure with FDS has probabilistic distribution. In this study, nonlinear time history analyses were performed for the structure with FDS subjected to artificial earthquake loads generated using Kanai-Tajimi filter. An equation for the probability density function (PDF) of the displacement response is proposed by adapting the PDF of the normal distribution. Finally, coefficients of the proposed PDF are obtained by regression analysis of the statistical distribution of the time history responses. Finally the correlation between PDFs and statistical response distribution is presented.

Seismic Design of Vertical Shaft using Response Displacement Method (응답변위법을 적용한 수직구의 내진설계)

  • Kim, Yong-Min;Jeong, Sang-Seom;Lee, Yong-Hee;Jang, Jung-Bum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6C
    • /
    • pp.241-253
    • /
    • 2010
  • For seismic design of a vertical shaft, three-dimensional Finite Element (FE) analyses were performed to evaluate the accurate response of a vertical shaft and to apply a Response Displacement Method (RDM). Special attention is given to the evaluation of seismic base and response displacement of surrounding soil, estimation of load and loading method. Based on the result, it was found that shear wave velocity of seismic base greater than 1500m/s was appropriate for the seismic design. It was also found that double cosine method which evaluates a response displacement of surrounding soil was most appropriate to consider the characteristic of multi-layered soil. Finally, shape effect of the structure was considered to clarify the dynamic behavior of vertical shaft and it would be more economical vertical shaft design when a vertical shaft was analyzed by using RDM.