• 제목/요약/키워드: displacement formulation

검색결과 446건 처리시간 0.024초

Nonlinear bending analysis of laminated composite stiffened plates

  • Patel, Shuvendu N.
    • Steel and Composite Structures
    • /
    • 제17권6호
    • /
    • pp.867-890
    • /
    • 2014
  • This paper deals with the geometric nonlinear bending analysis of laminated composite stiffened plates subjected to uniform transverse loading. The eight-noded degenerated shell element and three-noded degenerated curved beam element with five degrees of freedom per node are adopted in the present analysis to model the plate and stiffeners respectively. The Green-Lagrange strain displacement relationship is adopted and the total Lagrangian approach is taken in the formulation. The convergence study of the present formulation is carried out first and the results are compared with the results published in the literature. The stiffener element is reformulated taking the torsional rigidity in an efficient manner. The effects of lamination angle, depth of stiffener and number of layers, on the bending response of the composite stiffened plates are considered and the results are discussed.

Element free formulation for connecting sub-domains modeled by finite elements

  • Pan, Chan-Ping;Tsai, Hsing-Chih
    • Structural Engineering and Mechanics
    • /
    • 제25권4호
    • /
    • pp.467-480
    • /
    • 2007
  • Two methods were developed for analyzing problems with two adjacent sub-domains modeled by different kinds of elements in finite element method. Each sub-domain can be defined independently without the consideration of equivalent division with common nodes used for the interface. These two methods employ an individual interface to accomplish the compatibility. The MLSA method uses the moving least square approximation which is the basic formulation for Element Free Galerkin Method to formulate the interface. The displacement field assumed by this method does not pass through nodes on the common boundary. Therefore, nodes can be chosen freely for this method. The results show that the MLSA method has better approximation than traditional methods.

개선된 degenerated 쉘요소를 사용한 쉘구조의 비선형해석 (Nonlinear Analysis of Shell Structures by Improved Degenerated Shell Element)

  • 최창근;유승운
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1990년도 봄 학술발표회 논문집
    • /
    • pp.18-23
    • /
    • 1990
  • The paper is concerned with the elasto-plastic and geometrically nonlinear analysis of shell structures using an improved degenerated shell element. In the formulation of the improved degenerated shell element, an enhanced interpolation of transverse shear strains in the natural coordinate system is used to overcome the shear locking problems; the reduced integration technique in in-plane strains is applied to avoid membrane locking behavior; selective addition the nonconforming displacement modes improve the element performances. This element is free of serious locking problems and undesirable compatible or commutable spurious kinematic deformation modes and passes the patch tests. An incremental total Lagrangian formulation is presented which allows the calculation of arbitrarily large displacements and rotations. The resulting nonlinear equations are solved by the Newton-Raphson solution scheme. The versatility and accuracy of this improved degenerated shell element are demonstrated by solving several numerical examples.

  • PDF

A Computational Platform for Nonlinear Analysis of Prestressed Concrete Shell Structures

  • Kim, Tae-Hoon;Shin, Hyun-Mock
    • 한국전산구조공학회논문집
    • /
    • 제23권6호
    • /
    • pp.593-606
    • /
    • 2010
  • This paper presents a formulation to include the prestressing effects in available numerical models for the nonlinear material, instantaneous and long-term analysis of prestressed concrete shell structures, based on the displacement formulation of the finite element method. A four-node flat shell element is adopted for nonlinear analysis of prestressed concrete shells. This element was incorporated into an existing general-purpose finite element analysis program. A distinctive characteristic of the element is its capability to simulate the behavior of shells subjected to a variety of types of loading and drilling rotational stiffness. Consequently, the response of prestressed concrete shell structures can be predicted accurately using the proposed nonlinear finite element procedure.

A refined functional and mixed formulation to static analyses of fgm beams

  • Madenci, Emrah
    • Structural Engineering and Mechanics
    • /
    • 제69권4호
    • /
    • pp.427-437
    • /
    • 2019
  • In this study, an alternative solution procedure presented by using variational methods for analysis of shear deformable functionally graded material (FGM) beams with mixed formulation. By using the advantages of $G{\hat{a}}teaux$ differential approaches, a refined complex general functional and boundary conditions which comprises seven independent variables such as displacement, rotation, bending moment and higher-order bending moment, shear force and higher-order shear force, is derived for general thick-thin FGM beams via shear deformation beam theories. The mixed-finite element method (FEM) is employed to obtain a beam element which have a 2-nodes and total fourteen degrees-of-freedoms. A computer program is written to execute the analyses for the present study. The numerical results of analyses obtained for different boundary conditions are presented and compared with results available in the literature.

Nonlinear finite element vibration analysis of functionally graded nanocomposite spherical shells reinforced with graphene platelets

  • Xiaojun Wu
    • Advances in nano research
    • /
    • 제15권2호
    • /
    • pp.141-153
    • /
    • 2023
  • The main objective of this paper is to develop the finite element study on the nonlinear free vibration of functionally graded nanocomposite spherical shells reinforced with graphene platelets under the first-order shear deformation shell theory and von Kármán nonlinear kinematic relations. The governing equations are presented by introducing the full asymmetric nonlinear strain-displacement relations followed by the constitutive relations and energy functional. The extended Halpin-Tsai model is utilized to specify the overall Young's modulus of the nanocomposite. Then, the finite element formulation is derived and the quadrilateral 8-node shell element is implemented for finite element discretization. The nonlinear sets of dynamic equations are solved by the use of the harmonic balance technique and iterative method to find the nonlinear frequency response. Several numerical examples are represented to highlight the impact of involved factors on the large-amplitude vibration responses of nanocomposite spherical shells. One of the main findings is that for some geometrical and material parameters, the fundamental vibrational mode shape is asymmetric and the axisymmetric formulation cannot be appropriately employed to model the nonlinear dynamic behavior of nanocomposite spherical shells.

A direct modification method for strains due to non-conforming modes

  • Choi, Chang-Koon;Chung, Keun-Young;Lee, Tae-Yeol
    • Structural Engineering and Mechanics
    • /
    • 제11권3호
    • /
    • pp.325-340
    • /
    • 2001
  • This paper addresses an efficient modification method that eliminates the undesirable effects of strains due to various non-conforming modes so that the non-conforming element can pass the patch test unconditionally. The scheme is incorporated in the element formulation to establish new types of non-conforming hexahedral elements designated as NHx and NVHx for the regular element and variable node element, respectively. Non-conforming displacement modes are selectively added to the ordinary (conforming) element displacement assumptions to improve the bending behavior of the distorted solid element. To verify the validation of proposed direct modification method and the improvement of element behavior, several numerical tests are carried out. Test results show that the proposed method is effective and its applications to non-conforming solid elements guarantee for the element to pass the patch test.

Vibration and Post-buckling Behavior of Laminated Composite Doubly Curved Shell Structures

  • Kundu, Chinmay Kumar;Han, Jae-Hung
    • Advanced Composite Materials
    • /
    • 제18권1호
    • /
    • pp.21-42
    • /
    • 2009
  • The vibration characteristics of post-buckled laminated composite doubly curved shells are investigated. The finite element method is used for the analysis of post-buckling and free vibration of post-buckled laminated shells. The geometric non-linear finite element model includes the general non-linear terms in the strain-displacement relationships. The shell geometry used in the present formulation is derived using an orthogonal curvilinear coordinate system. Based on the principle of virtual work the non-linear finite element equations are derived. Arc-length method is implemented to capture the load-displacement equilibrium curve. The vibration characteristics of post-buckled shell are performed using tangent stiffness obtained from the converged deflection. The code is first validated and then employed to generate numerical results. Parametric studies are performed to analyze the snapping and vibration characteristics. The relationship between loads and fundamental frequencies and between loads and the corresponding displacements are determined for various parameters such as thickness ratio and shallowness.

자동차 도어 웨더스트립의 유한요소 모델링 및 해석 (Non-linear Analysis for a Weatherstrip of a Vehicle Door with FE Modeling)

  • 김광훈;문병영;김병수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.38-41
    • /
    • 2004
  • Weatherstrip seals protect passengers form noise, dust, rain and wind out of the vehicle. The more contact area between a body frame and a weatherstrip, the higher efficiency of sealing. A weatherstrip is a sort of an elastomer. Mechanical properties of the weatherstrip is obtained by uniaxial tension test. In this study, nonlinear finite element(FE) analysis is performed to obtain displacements and contact shapes of the weatherstrip. The FE model is developed by using Ogden-foam formulation. In the results of nonlinear FE analysis, the most valuable deformation of the weatherstrip occurred when displacement control value reaches 7.2mm. Severe deformation is observed as the displacement control value become more increased.

  • PDF

고차전단변형과 대처짐을 고려한 복합적층판의 저속충격거동 해석 (Low-Velocity Impact Response Analysis of Composite Laminates Considering Higher Order Shear Deformation and Large Deflection)

  • 최익현;홍창선
    • 대한기계학회논문집
    • /
    • 제17권12호
    • /
    • pp.2982-2994
    • /
    • 1993
  • Low-velocity impact responses of composite laminates are investigated using the finite element method based on various theories. In two-dimensional nonlinear analysis, a displacement field considering higher order shear deformation and large deflection of the laminate is assumed and a finite element formulation is developed using a C$^{o}$-continuous 9-node plate element. Also, three-dimensional linear analysis based on the infinitesimal strain-displacement assumptions is performed using 8-node brick elements with incompatible modes. A modified Hertzian contact law is incorporated into the finite element program to evaluate the impact force. In the time integration, the Newmark constant acceleration algorithm is used in conjuction with successive iterations within each time step. Numerical results from static analysis as well as the impact response analysis are presented including impact force histories, deflections, strains in the laminate. Impact responses according to two typical low-velocity impact conditions are compared each other.