• Title/Summary/Keyword: displacement coefficient method

Search Result 224, Processing Time 0.027 seconds

Development of the Optimal Performance Based Seismic Design Method for 2D Steel Moment Resisting Frames (2차원 철골 구조물의 최적 성능기반 내진설계법 개발)

  • Kwon Bong-Keun;Lee Hyun-Kook;Kwon Yun-Man;Park Hyo-Seon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.636-643
    • /
    • 2005
  • Recently, performance based seismic design (PBSD) methods have been suggested in numerous forms and widely studied as a new concept of seismic design. The PBDSs are far from being practical method due to complexity of algorithms resided in the design philosophy. In this paper, optimal seismic design method based on displacement coefficient method (DCM) described in FEMA 273 is developed. As an optimizer simple genetic algorithms are used for implementations. In the optimization problem formulated in this Paper, strength design criteria stiffness design criteria, and nonlinear response criteria specified in DCM are included in design constraints. The optimal performance based design(OPBD) method is applied to seismic design of a 3-story two-dimensional steel frame structures.

  • PDF

Comparison of contacting and non-contacting methods in measuring the surface roughness of texture (섬유의 거칠기 측정에 있어서 비접촉식 방식과 접촉식 방식의 비교)

  • 박연규;강대임;송후근;권영하
    • Science of Emotion and Sensibility
    • /
    • v.2 no.1
    • /
    • pp.105-111
    • /
    • 1999
  • In order to introduce the touch to engineering and industries, it must be preceded to dstablish a quantitative barometer of the feeling. for this purpose, we developed a tactile measuring system to measure physical properties of texture, such as surface roughness, friction coefficient and compliance. The tactile measuring system uses a LASER type displacement sensor, which is a non-contacting system, in measuring the surface roughness. By considering that human tactile system is a contacting mechanism, this non-contacting method needs to be modified. As a precedent research of that, we compared the contacting and non-contacting method in this paper. Surface roughness of ten cloths were measured by using the measuring system, then compared to the test results using the Kawabata evaluation system(KES), which uses a contacting method in measuring the surface roughness.

  • PDF

Quasi-static responses of time-dependent sandwich plates with viscoelastic honeycomb cores

  • Nasrin Jafari;Mojtaba Azhari
    • Structural Engineering and Mechanics
    • /
    • v.88 no.6
    • /
    • pp.589-598
    • /
    • 2023
  • This article addresses the quasi-static analysis of time-dependent honeycomb sandwich plates with various geometrical properties based on the bending analysis of elastic honeycomb sandwich plates employing a time function with three unknown coefficients. The novel point of the developed method is that the responses of viscoelastic honeycomb sandwich plates under static transversal loads are clearly formulated in the space and time domains with very low computational costs. The mechanical properties of the sandwich plates are supposed to be elastic for the faces and viscoelastic honeycomb cells for the core. The Boltzmann superposition integral with the constant bulk modulus is used for modeling the viscoelastic material. The shear effect is expressed using the first-order shear deformation theory. The displacement field is predicted by the product of a determinate geometrical function and an indeterminate time function. The simple HP cloud mesh-free method is utilized for discretizing the equations in the space domain. Two coefficients of the time function are extracted by answering the equilibrium equation at two asymptotic times. And the last coefficient is easily determined by solving the first-order linear equation. Numerical results are presented to consider the effects of geometrical properties on the displacement history of viscoelastic honeycomb sandwich plates.

On Development of Vibration Analysis Algorithm of Beam with Multi-Joints(II) (다관절 보의 진동해석 알고리즘 개발에 관한 연구 II)

  • 문덕홍;최명수;홍승수;강현석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.203-209
    • /
    • 1996
  • The authors apply the transfer influence coefficient method to the 3-dimensional vibration analysis of beam with multi-joints and formulate a general algorithm to analysis the longitudinal, flexural and torsional coupled forced vibration. In this paper, a structure, which is mainly founded in the robot arms, cranes and so on, has some crooked parts, subsystems and joints but has no closed loop in this system. It is modeled as the beam of a distributed mass system with massless translational, rotational and torsional springs in each node, and joint elements of release or roll at which node the displacement vector is discontinuous. The superiority of the present method to the transfer matrix method in the computation accuracy was confirmed from the numerical computation results. Moreover, we confirmed that boundary and intermediate conditions could be controlled by varying the values of the spring constants.

  • PDF

Combined resonance of axially moving truncated conical shells in hygro-thermal environment

  • Zhong-Shi Ma;Gui-Lin She
    • Structural Engineering and Mechanics
    • /
    • v.91 no.3
    • /
    • pp.291-300
    • /
    • 2024
  • This paper predicts the combined resonance behavior of the truncated conical shells (TCSs) under transverse and parametric coupled excitation. The motion governing equation is formulated in the framework of high-order shear deformation theory, von Kármán theory and Hamilton principle. The displacements and boundary conditions are characterized by a set of displacement shape functions with double Fourier series. Subsequently, the method of varying amplitude (MVA) is utilized to derive the approximate analytical solution of system response of TCSs. A comparative analysis is conducted to verify the accuracy of the current computational method. Additionally, the interaction mechanism of combined resonance, parametric resonance and primary resonance is examined. And the effect of damping coefficient, the external excitation, initial phase, axial motion speed, temperature variation, humidity variation, material properties and semi-vortex angle on the vibration mechanism are analyzed.

Experimental Study of the Dynamic Characteristics of Rubber Mounts for Agricultural Tractor Cabin

  • Choi, Kyujeong;Oh, Jooseon;Ahn, Davin;Park, Young-Jun;Park, Sung-Un;Kim, Heung-Sub
    • Journal of Biosystems Engineering
    • /
    • v.43 no.4
    • /
    • pp.255-262
    • /
    • 2018
  • Purpose: To obtain the dynamic characteristics (spring stiffness and damping coefficient) of a rubber mount supporting a tractor cabin in order to develop a simulation model of an agricultural tractor. Methods: The KS M 6604 rubber mount test method was used to test the dynamic characteristics of the rubber mount. Of the methods proposed in the standard, the resonance method was used. To perform the test according to the standard, a base excitation test device was constructed and the accelerations were measured. Results: Displacement transmissibility was measured by varying the frequency from 3-30 Hz. The vibration transmissibility at resonance was confirmed, and the dynamic stiffness and damping coefficient of the rubber mount were obtained. The front rubber mount has a spring constant of 1247 N/mm and damping ratio of 3.27 Ns/mm, and the rear rubber mount has a spring constant of 702 N/mm and damping ratio of 1.92 Ns/mm. Conclusions: The parameters in the z-direction were obtained in this study. In future studies, we will develop a more complete tractor simulation model if the parameters for the x- and y-directions can be obtained.

Nonlinear dynamic response of axially moving GPLRMF plates with initial geometric imperfection in thermal environment under low-velocity impact

  • G.L. She;J.P. Song
    • Structural Engineering and Mechanics
    • /
    • v.90 no.4
    • /
    • pp.357-370
    • /
    • 2024
  • Due to the fact that the mechanism of the effects of temperature and initial geometric imperfection on low-velocity impact problem of axially moving plates is not yet clear, the present paper is to fill the gap. In the present paper, the nonlinear dynamic behavior of axially moving imperfect graphene platelet reinforced metal foams (GPLRMF) plates subjected to lowvelocity impact in thermal environment is analyzed. The equivalent physical parameters of GPLRMF plates are estimated based on the Halpin-Tsai equation and the mixing rule. Combining Kirchhoff plate theory and the modified nonlinear Hertz contact theory, the nonlinear governing equations of GPLRMF plates are derived. Under the condition of simply supported boundary, the nonlinear control equation is discretized with the help of Gallekin method. The correctness of the proposed model is verified by comparison with the existing results. Finally, the time history curves of contact force and transverse center displacement are obtained by using the fourth order Runge-Kutta method. Through detailed parameter research, the effects of graphene platelet (GPL) distribution mode, foam distribution mode, GPL weight fraction, foam coefficient, axial moving speed, prestressing force, temperature changes, damping coefficient, initial geometric defect, radius and initial velocity of the impactor on the nonlinear impact problem are explored. The results indicate that temperature changes and initial geometric imperfections have significant impacts.

Drift Design Method of High-rise Buildings Considering Design Variable Linking Strategy and Load Combinations (부재 그룹과 하중 조합을 고려한 고층건물 변위조절 설계법)

  • Seo, Ji-Hyun;Park, Hyo-Seon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.4 s.74
    • /
    • pp.357-367
    • /
    • 2006
  • Drift design methods using resizing algorithms have been presented as a practical drift design method since the resizing algorithms proposed easily find drift contribution of each member, called member displacement participation factor, to lateral drift to be designed without calculation of sensitivity coefficient or re-analysis. Weight of material to be redistributed for minimization of the lateral drift is determined according to the member displacement participation factors. However, resizing algorithms based on energy theorem must consider loading conditions because they have different displacement contribution according to different loading conditions. Furthermore, to improve practicality of resizing algorithms, structural member grouping is required in application of resizing algorithms to drift control of high-rise buildings. In this study, three resizing algorithms on considering load condition and structural member grouping are developed and applied to drift design of a 20-story steel-frame shear-wall structure and a 50-story frame shear-wall system with outriggers.

Interfacial Durability and Electrical Properties of CNT or ITO/PVDF Nanocomposites for Self-Sensor and Micro Actuator (자체-센서와 미세 작동기를 위한 CNT/PVDF 및 ITO/PVDF 나노복합재료의 전기적 및 계면 내구성 비교 평가)

  • Gu, Ga-Young;Wang, Zuo-Jia;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.24 no.6
    • /
    • pp.12-17
    • /
    • 2011
  • Interfacial durability and electrical properties of CNT or ITO coated PVDF nanocomposites were investigated for self-sensor and micro actuator applications. Electrical resistivity of nanocomposites for the durability on interfacial adhesion was measured using four points method via fatigue test under cyclic loading. CNT/PVDF nanocomposite exhibited lower electrical resistivity and good self-sensing performance due to inherent electrical property. Durability on the interfacial adhesion was good for both CNT and ITO/PVDF nanocomposites. With static contact angle measurement, surface energy, work of adhesion, and spreading coefficient between either CNT or ITO and PVDF were obtained to verify the correlation with interfacial adhesion durability. The optimum actuation performance of CNT or ITO coated PVDF specimen was measured by the displacement change using laser displacement sensor with changing frequency and voltage. The displacement of actuated nanocomposites decreased with increasing frequency, whereas the displacement increased with voltage increment. Due to nanostructure and inherent electrical properties, CNT/PVDF nanocomposite exhibited better performance as self-sensor and micro actuator than ITO/PVDF case.

Investigating the load-displacement restorative force model for steel slag self-stressing concrete-filled circular steel tubular columns

  • Feng Yu;Bo Xu;Chi Yao;Alei Dong;Yuan Fang
    • Steel and Composite Structures
    • /
    • v.49 no.6
    • /
    • pp.615-631
    • /
    • 2023
  • To investigate the seismic behavior of steel slag self-stressing concrete-filled circular steel tubular (SSSCFCST) columns, 14 specimens were designed, namely, 10 SSSCFCST columns and four ordinary steel slag (SS) concrete (SSC)-filled circular steel tubular (SSCFCST) columns. Comparative tests were conducted under low reversed cyclic loading considering various parameters, such as the axial compression ratio, diameter-thickness ratio, shear-span ratio, and expansion ratio of SSC. The failure process of the specimens was observed, and hysteretic and skeleton curves were obtained. Next, the influence of these parameters on the hysteretic behavior of the SSSCFCST columns was analyzed. The self stress of SS considerably increased the bearing capacity and ductility of the specimens. Results indicated that specimens with a shear-span ratio of 1.83 exhibited compression bending failure, whereas those with shear-span ratios of 0.91 or 1.37 exhibited drum-shaped cracking failure. However, shear-bond failure occurred in the nonloading direction. The stiffness of the falling section of the specimens decreased with increasing shear-span ratio. The hysteretic curves exhibited a weak pinch phenomenon, and their shapes evolved from a full shuttle shape to a bow shape during loading. The skeleton curves of the specimens were nearly complete, progressing through elastic, elastoplastic, and plastic stages. Based on the experimental study and considering the effects of the SSC expansion rate, shear-span ratio, diameter-thickness ratio, and axial compression ratio on the seismic behavior, a peak displacement coefficient of 0.91 was introduced through regression analysis. A simplified method for calculating load-displacement skeleton curves was proposed and loading and unloading rules for SSSCFCST columns were provided. The load-displacement restorative force model of the specimens was established. These findings can serve as a guide for further research and practical application of SSSCFCST columns.