• Title/Summary/Keyword: displacement based method

Search Result 1,650, Processing Time 0.029 seconds

A matrix displacement formulation for minimum weight design of frames

  • Orakdogen, Engin
    • Structural Engineering and Mechanics
    • /
    • v.14 no.4
    • /
    • pp.473-489
    • /
    • 2002
  • A static linear programming formulation for minimum weight design of frames that is based on a matrix displacement method is presented in this paper. According to elementary theory of plasticity, minimum weight design of frames can be carried out by using only the equilibrium equations, because the system is statically determinate when at an incipient collapse state. In the present formulation, a statically determinate released frame is defined by introducing hinges into the real frame and the bending moments in yield constraints are expressed in terms of unit hinge rotations and the external loads respectively, by utilizing the matrix displacement method. Conventional Simplex algorithm with some modifications is utilized for the solution of linear programming problem. As the formulation is based on matrix displacement method, it may be easily adopted to the weight optimization of frames with displacement and deformation limitations. Four illustrative examples are also given for comparing the results to those obtained in previous studies.

Determination of Residual Stress by the Hole Drilling Method Based on Displacement Measurement (변위 측정을 기본으로 한 구멍뚫기방법에 의한 잔류응력 측정 방법)

  • Shin, Dong Il;Joo, Jin Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.11 s.242
    • /
    • pp.1542-1550
    • /
    • 2005
  • This paper presents the numerical procedure for calculating non-uniform residual stresses based on relieved displacements obtained from incremental hole drilling. The relationship between the in-plane displacement produced by introducing a blind hole and the corresponding residual stress is established. Finite element calculations are described to evaluate the relieved coefficients required for the determination of non-uniform residual stresses. Validity of the proposed method has been tested through three axisymmetric test examples and two three-dimensional examples. As a result of . simulation on the test examples, it is found that this numerical procedure is well adopted to measuring non-uniform residual stress in the full hole depth range of the hole diameter from the surface. The accuracy of the hole drilling method with displacement measurement is discussed, comparing tile method with strain measurement

Characteristics of the Method to Predict Strain Responses from the Measurements of Displacement Responses (변위응답의 측정으로부터 변형률응답을 예측하는 방법의 특성)

  • Lee, Gun-Myung;Ko, Jae-Heung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.844-848
    • /
    • 2005
  • A method to predict the strain responses from the measurements of displacement responses is considered. The method uses a transformation matrix which is composed of a displacement modal matrix and a strain modal matrix. The method can predict strains at points where displacements are not measured as well as at displacement measuring points. One of the drawbacks of the strain prediction method is that the displacement responses must be measured at many points on a structure simultaneously. This difficulty can be overcome by measuring the FRFs between displacements at a reference point and other point in sequence with a two channel measuring equipment This procedure is based on the assumption that the characteristics of excitation applied to the structure do not vary with time.

  • PDF

A Experimental Study on the Stability Management Method using change of Inclination for Embankment on Soft Clay (연약지반 성토시의 기울기변화를 이용한 안정관리기법에 관한 실험적 연구)

  • Ryu, Ji-Hoon;Im, Jong-Chul;Chang, Ji-Keon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.898-905
    • /
    • 2005
  • The settlement of embankment on soft clay includes shear settlement due to shear deformation. Even though the consolidation settlement is not related to lateral displacement, but shear settlement makes the embankment unstable because it deforms ground and decreases the ground strength. In order to determine the shear deformation behaviour during embankment construction, 3 cases (1B, 2B, and 3B) of rapid undrained loading tests on soft clays were performed. Shear settlement is consist of elastic settlement, plastic settlement and viscous settlement. Elastic settlement isn't considered because the range is small, therefore the first is the range of plastic displacement, and the second is that of viscous displacement in the displacement-time curve for each loading stage. After determining that the change in the inclination of the viscous displacement range is larger than in the plastic displacement range after the ground failure occurs for the loading stage, the stability management methods were suggested considering that it is hard to divide the plastic displacement range and the viscous displacement range. The stability management method was based on the ratio of the plastic displacement range's inclination and the viscous displacement range's inclination. A stability management method based on the ratio of the total inclination for each loading stage compared to the whole inclination in the initial loading stage was also recommended.

  • PDF

A Study on the Improvement of Stress Field Analysis in a Domain Composed of Dissimilar Materials

  • Song, Kee-Nam;Lee, Jin-Seok
    • Nuclear Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.202-211
    • /
    • 1998
  • Interfacial stresses at two-material interfaces and initial displacement field over the entire domain are obtained by modifying the potential energy functional with a penalty function, which enforces continuity of the stresses at the interface of two materials. Based on the initial displacement field and interfacial stresses, a new methodology to generate a continuous stress field over the entire domain has been proposed by combining the modified projection method of stress-smoothing and Loubignac's iterative method of improving the displacement field. Stress analysis is carried out on two examples made of dissimilar materials : one is a two-material cantilever composed of highly dissimilar materials and the other is a zirconium-lined cladding tube made of slightly dissimilar materials. Results of the analysis show that the proposed method provides an improved continuous stress field over the entire domain, and accurately predicts the nodal stresses at the interface, while the conventional displacement-based finite element method produces significant stress discontinuities at the interface. In addition, the total strain energy evaluated from the improved continuous stress field converges to the exact value in a few iterations.

  • PDF

Performance-Based Seismic Design of Reinforced Concrete Building Structures Using Inelastic Displacements Criteria

  • Kabeyaswa, Toshimi
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.3
    • /
    • pp.61-71
    • /
    • 1998
  • A performance-based seismic design method for reinforced concrete building structures being developed in Japan is outlined. Technical and scientific background of the performance-based design philosophy as well as recently developed seismic design guidelines are is presented, in which maximum displacement response to design earthquake motion is used as the limit-state design criteria. A method of estimating dynamic response displacement of the structures based on static nonlinear analysis is described. A theoretical estimation of nonlinear dynamic response considering the characteristics of energy input to the system is described in detail, which may be used as the standard method in the new performance-based code. A desing philosophy not only satisfying the criteria but also evaluating seismic capacity of the structures is also introduced.

  • PDF

Deformation-based seismic design of concrete bridges

  • Gkatzogias, Konstantinos I.;Kappos, Andreas J.
    • Earthquakes and Structures
    • /
    • v.9 no.5
    • /
    • pp.1045-1067
    • /
    • 2015
  • A performance-based design (PBD) procedure, initially proposed for the seismic design of buildings, is tailored herein to the structural configurations commonly adopted in bridges. It aims at the efficient design of bridges for multiple performance levels (PLs), achieving control over a broad range of design parameters (i.e., strains, deformations, ductility factors) most of which are directly estimated at the design stage using advanced analysis tools (a special type of inelastic dynamic analysis). To evaluate the efficiency of the proposed design methodology, it is applied to an actual bridge that was previously designed using a different PBD method, namely displacement-based design accounting for higher mode effects, thus enabling comparison of the alternative PBD approaches. Assessment of the proposed method using nonlinear dynamic analysis for a set of spectrum-compatible motions, indicate that it results in satisfactory performance of the bridge. Comparison with the displacement-based method reveals significant cost reduction, albeit at the expense of increased computational effort.

Measurement of Static and Dynamic Displacement by Image Processing and Study for Prediction Method of Velocity and Acceleration (영상처리를 이용한 정동적 변위 계측과 속도, 가속도 추산방식 연구)

  • Heo, Seok;Kwak, Moon-Kyu;Lee, Ho-Bum
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.527-532
    • /
    • 2010
  • This paper is concerned with the measurement of static and dynamic displacement by image processing(IP) and study for prediction method of velocity and acceleration. To measure the displacement visually, the measurement system consists of a telephoto zoom camera, ccd image device and a computer. The specific target on the white board is used to calculate the displacement of the structure. The captured image is then converted into a pixel-based data and then analyzed numerically. The limitation of the system depends on the image capturing speed and the pixel-size of image. In this paper, we developed for the displacement measurement using the image processing method. The proposed method enables us to measure the vibration measurement, velocity and acceleration directly without any contact. The current resolution of the displacement measurement is limited to 1/100 millimeter scale.

  • PDF

Vision-based hybrid 6-DOF displacement estimation for precast concrete member assembly

  • Choi, Suyoung;Myeong, Wancheol;Jeong, Yonghun;Myung, Hyun
    • Smart Structures and Systems
    • /
    • v.20 no.4
    • /
    • pp.397-413
    • /
    • 2017
  • Precast concrete (PC) members are currently being employed for general construction or partial replacement to reduce construction period. As assembly work in PC construction requires connecting PC members accurately, measuring the 6-DOF (degree of freedom) relative displacement is essential. Multiple planar markers and camera-based displacement measurement systems can monitor the 6-DOF relative displacement of PC members. Conventional methods, such as direct linear transformation (DLT) for homography estimation, which are applied to calculate the 6-DOF relative displacement between the camera and marker, have several major problems. One of the problems is that when the marker is partially hidden, the DLT method cannot be applied to calculate the 6-DOF relative displacement. In addition, when the images of markers are blurred, error increases with the DLT method which is employed for its estimation. To solve these problems, a hybrid method, which combines the advantages of the DLT and MCL (Monte Carlo localization) methods, is proposed. The method evaluates the 6-DOF relative displacement more accurately compared to when either the DLT or MCL is used alone. Each subsystem captures an image of a marker and extracts its subpixel coordinates, and then the data are transferred to a main system via a wireless communication network. In the main system, the data from each subsystem are used for 3D visualization. Thereafter, the real-time movements of the PC members are displayed on a tablet PC. To prove the feasibility, the hybrid method is compared with the DLT method and MCL in real experiments.

Measurement of Aircraft Wing Deformation and Vibration Using Stereo Pattern Recognition Method (스테레오 영상을 이용한 비행 중인 항공기 날개의 변위 및 진동 측정)

  • Kim, Ho-Young;Yoon, Jong-Min;Han, Jae-Hung;Kwon, Hyuk-Jun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.8
    • /
    • pp.568-574
    • /
    • 2015
  • The present study was conducted by using stereo pattern recognition method(SPR method) to measure the displacement and vibration of an airplane wing in flight condition. A SPR based measurement system was developed using two visible light stereo cameras. The visible light stereo images were processed to obtain marker points by adaptive threshold method and marker filtering technique. The marker points were used to reconstruct 3D point, displacement, and vibration data. The SPR system was installed on F-16 fighter. The wing displacement and vibration were measured in flight condition. Therefore, this paper presents a possibility that SPR based measurement system using visible light stereo camera can be very useful for measuring displacement and vibration of an airplane in flight condition.