• Title/Summary/Keyword: displacement analysis

Search Result 5,878, Processing Time 0.033 seconds

A Study on the Seisemic Performance Method for R.C bridge by using the Finite Element Analysis Program (유한요소해석 프로그램를 이용한 R.C교각의 내진성능 평가 기법 연구)

  • Park, Yeoun-Soo;Choi, Sun-Min;Lee, Byung-Geun;Seo, Byung-Chul;Park, Sun-Joon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.301-306
    • /
    • 2008
  • The present seismic analysis of Road-Bridge Design Standard is on a basis of load-vased analysis which lets structures have the strength over load. In this study, the capacity spectrum method, a kind of displacement based method, which is evaluated by displacement of structure, is presented as an alternative to the analysis method based on load. Seismic capacity is performed about the existing reinforced concrete pier which has already secured seismic design by capacity spectrum method. As a result, capacity spectrum method could realistically evaluate the non-elastic behavior of structures easilly and quickly and the displacement of structures for variable ground motion level. And it could efficiently apply to an evaluation of seismic capacity about the existing structures and a verification of design for capacity target of the structure. We propose the seisemic performance method by using the Finite Element Analysis Program.

  • PDF

A Study on Measurement of Displacement Using ESPI Method in Square Tubes (ESPI를 이용한 정사각튜브의 변형계측)

  • 박찬주;김경석;정현철;장호섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.241-244
    • /
    • 1997
  • This paper proposes Electronic Speckle Pattern Interferometry(ESPI) for the quantitative buckling analysis of square tube, which is unable to be measured with previous methods. The quantitative buckling analysis in elasticity is important part to study strain-stress analysis of thick-plated tube and fatigue analysis. However, it is unsolved problem with theory and previous experimental method. The merits of ESPI, Whole-filed measurement and high accurate 3D-displacement measurement make it possible to determinate the buckling analysis in elasticity quantitatively.

  • PDF

A Study on the Dynamic Analysis in the Shaft of Turbo-Blower for Fuel Cell (연료전지용 터보압축기 회전축의 동특성 해석에 관한 연구)

  • 김홍건;나석찬;김성철;강영우;양균의;이희관;최문창
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.1
    • /
    • pp.81-87
    • /
    • 2004
  • A 3-D FEM (Finite Element Method) analysis of the turbo-blower shaft attached to a fuel cell was performed using Lanczos algorithm. The modal analysis was analyzed in order to investigate natural frequency and maximum displacement for 10 times. It was found that the first mode of natural frequency is 109.1Hz with the maximum displacement of 0.16mm while the tenth mode of natural frequency is 2464Hz with the maximum displacement of 0.25mm. Consequently, the results of modal analysis of the turbo-blower for a fuel cell system show good dynamic responses.

Numerical Analysis of Tunnelling-Induced Ground Movements (터널굴착으로 발생한 지반거동에 대한 수치해석적 분석)

  • Son, Moo-Rak;Yun, Jong-Cheol
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.396-403
    • /
    • 2009
  • Numerical analysis has been performed to estimate maximum settlement and maximum horizontal displacement due to tunnel excavation varying ground condition, tunnel depth and diameter, and construction condition (volume loss at excavation face). The maximum surface settlement from the numerical analysis has been compared with the maximum settlement at tunnel crown considering ground condition, tunnel depth and diameter, and construction condition, and it has been also compared with the maximum horizontal displacement. The results from the numerical analysis have been compared with field measurements to confirm the applicability and validity of the results and by this comparison it is believed that the numerical results in this study can be utilized practically in analyzing the ground movements due to tunnel excavation.

  • PDF

An Experimental and Numerical Study on the Behavior Characteristics of Single-span Plastic Greenhouse under Snow Load (적설하중 재하실험과 구조해석을 통한 단동 비닐하우스의 거동 연구)

  • Song, Hosung;Kim, Yu-Yong;Yu, Seok-Cheol;Lim, Seong-Yoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.4
    • /
    • pp.45-53
    • /
    • 2022
  • In this study, the loading test and structural analysis were performed on the snow load and the results were compared. The load plates were loaded on the roof surface of the model, and structural analysis was performed under the same conditions. The result of loading test, the maximum displacement was observed in the center of the top, and the maximum stress was observed near the bottom point. Displacement and stress were found to have a high linear relationship with the load. Comparing the structural analysis results with the loading test results, the maximum displacement difference is 4.5% and the maximum stress difference is 10.2%. It is expected that closer results can be derived if the boundary conditions for the longitudinal direction of the model are clarified during experiments and analysis.

Evaluation of Vertical Displacement of Door of Built-in Bottom-Freezer Type Refrigerator by Structural Analysis (구조해석을 통한 하부냉동실형 빌트인 냉장고 도어의 처짐량 평가)

  • Lee, Boo-Youn
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.2
    • /
    • pp.89-96
    • /
    • 2020
  • In this study, we developed a finite element model for the built-in bottom-freezer type refrigerator and then used the structural analysis method to analyze and evaluate the deflection of the doors. We tested the validity of the developed analytical model by measuring the deflection of the hinge when loads were applied to the upper and lower hinges of the refrigerating compartment and compared these with the analysis results. The comparison of the vertical displacement of the measured result and the analysis result showed an error ratio of up to 12.8%, which indicates that the analytical model is consistent. Using the analytical model composed of the cabinet, hinges and doors, we performed analyses for two cases: both doors closed, and the refrigerating door open. Since the maximum vertical displacement of the refrigerating compartment door (R-door) with the food load is smaller than the gap between the lower surface of the R-door and the upper surface of the freezer compartment door (F-door), it is judged that the R-door and the F-door do not contact when the doors are opened or closed. In addition, the analysis result showed that the difference between the vertical displacement at the hinge on the opposite side and the hinge side of the R-door is favorably smaller than the management criterion of the refrigerator manufacturer.

The Cause Analysis of Greenhouse Damage for Heavy Snow using Large Displacement Analysis (폭설시 대변위해석을 이용한 온실의 피해원인 분석)

  • Park, Soon-Eung;Lee, Jong-Won;Lee, Suk-Gun;Lee, Hyun-Woo;Choi, Jae-Hyouk
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.2
    • /
    • pp.61-68
    • /
    • 2010
  • The collapsing accidents of pipe greenhouses in the farmhouse have been increased duo to heavy snow load. However, the study on exact structure analysis to prevent the collapse of pipe greenhouses is rare and the damage of the farmhouse is annually repeated. The method of existing structure analysis is basically made of linear elastic analysis based on the micro displacement. But the actual stiffness of the pipe greenhouse is significantly weaker than the stiffness of buildings and the load acting on the greenhouses gets to become relatively bigger. It means that the geometry shape of greenhouses changes so that the relation of strain-displacement gets to indicate a nonlinear behavior. Therefore, this study is performed to evaluate the structural safety so as to prevent the collapse of pipe greenhouses, which are the single-span greenhouse(farmhouse guidance shape, G) and multi-span greenhouse(farmhouse supply shape, 1-2W), by performing the large-displacement analysis considering nonlinear effects.

  • PDF

Geometrically Nonlinear Analysis of Plates Subjected to Uniaxial Compression by Finite Strip Method (일축(一軸) 압축(壓縮)을 받는 판(板)의 유한대판법(有限帶板法)에 의한 기하학적(幾何學的) 비선형(非線型) 해석(解析))

  • Lee, Yong Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.3
    • /
    • pp.107-115
    • /
    • 1985
  • For the finite deflection analysis of plates with initial deflections subjected to uniaxial compression, the formulation of incremental finite strip method is made and has been incorporated into a computer program. A new in plane displacement function varying along the load: direction has been derived from the out-of-plane displacement function by considering the curvature of a plate. Either incremental load type analysis or incremental displacement type analysis may be selected to solve incremental equibrium equations in the program. The following results have been obtained: 1. Incremental displacement type analysis is superior to incremental load type analysis in that the former converges more rapidly than the latter. 2. The finite strip method using the new displacement function gives as accurate results as analytical method and other finite element methods.

  • PDF

Displacement Evaluation on the Reinforced Concrete Shear Wall (철근 콘크리트 전단벽의 변형성능 평가)

  • 김정식;최윤철;서수연;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.185-190
    • /
    • 2002
  • Recently, a concern to verify the displacement capacity of shear wall has been arised to produce suitable data for the performance based design. In this paper, a process is presented In evaluate the displacement capacity of shear wall. The displacement of shear wall is expressed as the superpositopn of shear and flexural deformation. Variable crack angle truss model with a modification and existing analysis program(XTRACT) are used in calculating shear and flexural displacement, respectively. The accuracy of proposed method is evaluated by the comparison calculation results with previous test results. From the comparison, it was shown that the displacement capacity of shear wall could be well predicted by using the process.

  • PDF

$\pi$-A properties of phospholipid monolayers by Maxwell-displacement-current-measuring technique (변위전류법에 의한 지질 단분자막의 $\pi$-A특성)

  • 이경섭;전동규;권영수;국상훈
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.120-123
    • /
    • 1995
  • Maxwell-Displacement-Currnt-Measuring Technique(MDCM) is a simple system for displacement current measuring which consist with two electrodes to the electrometer, With this method, the displacement current flow only when the electric flux density change by the displacement of molecules or charge particles of membrance on the water surface. Thus, It is Possible to detect dynamic behavior of molecules of membrane without any electrical contact with molecule membrane. In this paper, We measure surface pressure, displacement current and dipole moment of phospholipid monolayers on the wafer surface with applied pressure by MDCM and We measured DTA(differential thermal analysis).

  • PDF