• Title/Summary/Keyword: dispersive

Search Result 1,825, Processing Time 0.033 seconds

Comparison of Quantitative Analysis of Radioactive Corrosion Products Using an EPMA and X-ray Image Mapping

  • Jung, Yang Hong;Choo, Young Sun
    • Corrosion Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.231-238
    • /
    • 2020
  • Radioactive corrosion product specimens were analyzed using an electron probe microanalyzer (EPMA) and X-ray image mapping. It is difficult to analyze the composition of radioactive corrosion products using an EPMA due to the size and rough shape of the surfaces. It is particularly challenging to analyze the composition of radioactive corrosion products in the form of piled up, small grains. However, useful results can be derived by applying a semi-quantitative analysis method using an EPMA with X-ray images. A standard-less, semi-quantitative method for wavelength dispersive spectrometry. EPMA analysis was developed with the objective of simplifying the analytical procedure required. In this study, we verified the reasonable theory of semi-quantitative analysis and observed the semi-quantitative results using a sample with a good surface condition. Based on the validated results, we analyzed highly rough-surface radioactive corrosion products and assessed their composition. Finally, the usefulness of the semi-quantitative analysis was reviewed by verifying the results of the analysis of radioactive corrosion products collected from spent nuclear fuel rods.

Fractional Diffusion Equation Approach to the Anomalous Diffusion on Fractal Lattices

  • Huh, Dann;Lee, Jin-Uk;Lee, Sang-Youb
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1723-1727
    • /
    • 2005
  • A generalized fractional diffusion equation (FDE) is presented, which describes the time-evolution of the spatial distribution of a particle performing continuous time random walk (CTRW) on a fractal lattice. For a case corresponding to the CTRW with waiting time distribution that behaves as $\psi(t) \sim (t) ^{-(\alpha+1)}$, the FDE is solved to give analytic expressions for the Green’s function and the mean squared displacement (MSD). In agreement with the previous work of Blumen et al. [Phys. Rev. Lett. 1984, 53, 1301], the time-dependence of MSD is found to be given as < $r^2(t)$ > ~ $t ^{2\alpha/dw}$, where $d_w$ is the walk dimension of the given fractal. A Monte-Carlo simulation is also performed to evaluate the range of applicability of the proposed FDE.

Synthesis of CdSe-TiO2 Photocatalyst and Their Enhanced Photocatalytic Activities under UV and Visible Light

  • Lim, Chang-Sung;Chen, Ming-Liang;Oh, Won-Chun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1657-1661
    • /
    • 2011
  • In this study, CdSe-$TiO_2$ photocatalyst were synthesized by a facile solvothermal method and characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis and UV-vis diffuse reflectance spectrophotometer. The photocatalytic activity was investigated by degrading methylene blue (MB) in aqueous solution under irradiation of UV light as well as visible light. The absorbance of degraded MB solution was determined by UV-vis spectrophotometer. The results revealed that the CdSe-$TiO_2$ photocatalyst exhibited much higher photocatalytic activity than $TiO_2$ both under irradiation of UV light as well as visible light.

Green Synthesis of Silver and Gold Nanoparticles Using Lonicera Japonica Flower Extract

  • Nagajyothi, P.C.;Lee, Seong-Eon;An, Minh;Lee, Kap-Duk
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2609-2612
    • /
    • 2012
  • A simple green method was developed for rapid synthesis of silver and gold nanoparticles (AgNPs and AuNPs) has been reported using Lonicera japonica flower extract as a reducing and a capping agent. AgNPs and AuNPs were carried out at $70^{\circ}C$. The successful formation of AgNPs and AuNPs have been confirmed by UV-Vis spectro photometer, fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy dispersive X-ray Analysis (EDAX), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). To our knowledge, this is the first report where Lonicera japonica flower was found to be a suitable plant source for the green synthesis of AgNPs and AuNPs.

Development of Palladium, Gold and Gold-Palladium Containing Metal-Carbon Nanoreactors: Hydrogen Adsorption

  • Mayani, Vishal J.;Mayani, Suranjana V.;Kim, Sang Wook
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1312-1316
    • /
    • 2014
  • Metal-carbon nanoreactors (MCNRs) were prepared from a pristine carbon cage (CC) using a simple and efficient template method with nano silica ball (NSB), pyrolysis fuel oil (PFO) and transition metals, such as palladium and gold. Metal nanoparticles were embedded in approximately 25 and 170 nm sized, highly ordered carbon cages. The newly developed Pd, Au and Au-Pd doped carbon nanoreactors were characterized by microanalysis, $N_2$ adsorption-desorption isotherm, powder X-ray diffraction (XRD), thermo-gravimetric analysis (TGA), scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS), transmission electron microscopy and inductively coupled plasma (ICP) analysis. The ordered MCNRs have exhibited dynamic hydrogen adsorption capability compared to the carbon cage.

Investigation of shinning Spot Defect on Hot-Dip Galvanized Steel Sheets

  • Liu, Yonggang;Cui, Lei
    • Corrosion Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.125-129
    • /
    • 2014
  • Shinning spot defects on galvanized steel sheets were studied by optical microscope, scanning electron microscope(SEM), Energy Dispersive Spectrometer (EDS) and Laser-Induced Breakdown Spectroscopy Original Position Statistic Distribution Analysis (LIBSOPA) in this study. The research shows that the coating thickness of shinning spot defects which caused by the substrate defect is much lower than normal area, and when skin passed, the shinning spot defect area can not touch with skin pass roll which result in the surface of shinning spot is flat while normal area is rough. The different coating morphologies have different effects on the reflection of light, which cause the shinning spot defects more brighter than normal area.

Simple fabrication route for vertically-aligned CZTS nanorod arrays for photoelectrochemical application based on AAO template

  • Kim, Ji-Min;Yang, U-Seok;O, Yun-Jeong;Mun, Ju-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.402.2-402.2
    • /
    • 2016
  • In photoelectrochemical (PEC) water splitting, Cu2ZnSnS4 (CZTS) compound has attracted intense attention as a photocathode due to not only large optical absorption coefficient, but also earth-abundance of constituent elements and suitable band alignment. With rapid development of nanotechnology, one-dimensional nanostructures of CZTS have been investigated as a potential form to achieve high efficiency because the nanostructures are expected to be capable of capturing more light and enhancing charge separation and transport. Here, we report a well-controlled fabrication route for vertically-aligned CZTS nanorod arrays on anodic aluminium oxide (AAO) template via simple sol-gel process followed by deposition of ZnS or CdS buffer layers on the CZTS nanorod to enhance charge separation. The structure, morphology, composition, optical absorption, and PEC properties of the resulting CZTS nanorod samples were characterized using X-ray diffraction, Raman spectroscopy, transmission electron microscopy, energy dispersive X-ray spectrometry, scanning electron microscopy, and UV-vis spectroscopy.

  • PDF

Flow Marks of Polypropylene (PP) Composites in the Injection Molding

  • Jeong, Hyeon-Taek;Kim, Yong-Ryeol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.320-325
    • /
    • 2015
  • Flow mark is a sort of surface defect on the composite that can arise during the filling stage of the injection molding process. The purpose of this study is to clarify a mechanism of the flow mark which appears on the surface of injection molded Polypropylene (PP) through the characterization of the surface structure. The materials used in this report are PP/rubber and PP/talc compounding, which are widely used in automobile part. The flow mark shows two different constitutions, such as a luster part and a cloud part on the surface of the injection molded PP. We have investigated the surface structure of PP/rubber and PP/talc composites by using scanning electron microscope (SEM), energy dispersive x-ray spectroscopy (EDAX) and optical microscopy (OM). As a result, the cloud part contains higher contents of the rubber and talc compare to the luster part.

Preparation and characterization of nanosized hollow silica in the presence of aluminum isopropoxide

  • Nguyen, Ngoc Anh Thu;Kim, Hyun-Ik;Kim, Sang Hern
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.421-427
    • /
    • 2016
  • Nanosized hollow silica was prepared by $St{\ddot{o}}ber$ method in the presence of aluminum isopropoxide. The mixture of polyelectrolytes such as poly(sodium 4-styrene sulfonate)(PSS) and polyacrylic acid(PAA) were used as templates. Tetraethylorthosilicate(TEOS) and aluminum isopropoxide were used as precursors for silica and alumina, respectively. The function of aluminum isopropoxide is to increase the porosity of silica shell. The characterizations of hollow silica were examined by TEM(transmission electron microscopy), TGA(thermogravimetric analysis), BET(Brunauer Emmett Teller), Energy-dispersive X-ray spectroscopy(EDS), and FT-IR spectrum. It was found that the shell thickness of hollow silica was around 8 nm and the core diameter was around 20 nm by TEM.

Structural Characterization and Dielectric Studies of Superparamagnetic Iron Oxide Nanoparticles

  • Sivakumar, D.;Naidu, K. Chandra Babu;Nazeer, K. Prem;Rafi, M. Mohamed;kumar, G. Ramesh;Sathyaseelan, B.;Killivalavan, G.;Begam, A. Ayisha
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.3
    • /
    • pp.230-238
    • /
    • 2018
  • Superparamagnetic iron oxide nanoparticles (SPIONs) have been prepared without using surfactants to assess their stability at different time intervals. The synthesized particles were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, ultraviolet-visible-near infrared spectroscopy, and energy dispersive spectroscopy. Field emission scanning electron microscopy and high-resolution transmission electron microscopy images of the samples were also investigated. The average particle size was measured to be 12.7 nm even in the polydispersed form. The magnetic and dielectric characteristics of the $Fe_3O_4$ nanoparticles have also been studied and discussed in detail.