Browse > Article
http://dx.doi.org/10.5012/bkcs.2005.26.11.1723

Fractional Diffusion Equation Approach to the Anomalous Diffusion on Fractal Lattices  

Huh, Dann (Department of Chemistry, Seoul National University)
Lee, Jin-Uk (Department of Chemistry, Seoul National University)
Lee, Sang-Youb (Department of Chemistry, Seoul National University)
Publication Information
Abstract
A generalized fractional diffusion equation (FDE) is presented, which describes the time-evolution of the spatial distribution of a particle performing continuous time random walk (CTRW) on a fractal lattice. For a case corresponding to the CTRW with waiting time distribution that behaves as $\psi(t) \sim (t) ^{-(\alpha+1)}$, the FDE is solved to give analytic expressions for the Green’s function and the mean squared displacement (MSD). In agreement with the previous work of Blumen et al. [Phys. Rev. Lett. 1984, 53, 1301], the time-dependence of MSD is found to be given as < $r^2(t)$ > ~ $t ^{2\alpha/dw}$, where $d_w$ is the walk dimension of the given fractal. A Monte-Carlo simulation is also performed to evaluate the range of applicability of the proposed FDE.
Keywords
Fractional diffusion equation; Continuous time random walk; Dispersive diffusion; Sierpinski gasket; Percolation cluster;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 O'Shaughnessy, B.; Procaccia, I. Phys. Rev. Lett. 1985, 54, 455;   DOI   ScienceOn
2 Phys. Rev. A 1985, 32, 3073   DOI
3 Metzler, R.; Glockle, W. G.; Nonnenmacher, T. F. Physica A 1994, 211, 13   DOI   ScienceOn
4 Metzler, R.; Nonnenmacher, T. F. J. Phys. A: Math. Gen. 1997, 30, 1089   DOI   ScienceOn
5 Campos, D.; Mendez, V.; Fort, J. Phys. Rev. E 2004, 69, 031115   DOI   ScienceOn
6 Even, U.; Rademann, K.; Jortner, J. Phys. Rev. Lett. 1984, 52, 2164   DOI
7 Montroll, E. W.; Weiss, G. H. J. Math. Phys. 1965, 6, 167   DOI
8 Metzler, R.; Klafter, J. Phys. Rep. 2000, 339, 1   DOI   ScienceOn
9 Balakrishnan, V. Physica A 1985, 132, 569   DOI   ScienceOn
10 Barkai, E.; Metzler, R.; Klafter, J. Phys. Rev. E 2000, 61, 132   DOI   ScienceOn
11 Schneider, W. R.; Wyss, W. J. Math. Phys. 1989, 30, 134   DOI
12 Havlin, S.; ben-Avraham, D. Adv. Phys. 1987, 36, 695   DOI   ScienceOn
13 Klafter, J.; Zumofen, G.; Blumen, A. J. Phys. A: Math. Gen. 1991, 24, 4835   DOI   ScienceOn
14 ben-Avraham, D.; Havlin, S. Diffusion and Reactions in Fractals and Disordered Systems; Cambridge University Press: Cambridge, 2000
15 The Fractal Approach to Heterogeneous Chemistry; Avnir, D., Ed.; Wiley: New York, 1989
16 Blumen, A.; Klafter, J.; White, B. S.; Zumofen, G. Phys. Rev. Lett. 1984, 53, 1301   DOI
17 Jakobs, A.; Kehr, K. W. Phys. Rev. B 1993, 48, 8780   DOI   ScienceOn
18 Abramowitz, M.; Stegun, I. A. Handbook of Mathematical Functions; Dover: New York, 1972
19 Seki, K.; Wojcik, M.; Tachiya, M. J. Chem. Phys. 2003, 119, 7525   DOI   ScienceOn
20 Press, W. H.; Flannery, B. P.; Teukolsky, A. A.; Vetterling, W. T. Numerical Recipes; Cambridge University Press: Cambridge, 1986
21 Srivastava, H. M.; Gupta, K. C.; Goyal, S. P. The H-Functions of One and Two Variables with Applications; South Asian Publishers: New Delhi, 1982
22 Ratto, T. V.; Longo, M. L. Langmuir 2003, 19, 1788   DOI   ScienceOn
23 Blumen, A.; Klafter, J.; Zumofen, G. In Optical Spectroscopy of Glasses, Zschokke, I., Ed.; Reidel: Dordrecht, 1986; p 199
24 Scher, H.; Montroll, E. W. Phys. Rev. B 1975, 12, 2455   DOI
25 Wong, I. Y.; Gardel, M. L.; Reichman, D. R.; Weeks, E. R.; Valentine, M. T.; Bausch, A. R.; Weitz, D. A. Phys. Rev. Lett. 2004, 92, 178101   DOI   ScienceOn