• Title/Summary/Keyword: dispersion of velocity

Search Result 631, Processing Time 0.028 seconds

Lagrangian Investigation of Turbulent Channel Flow (II) - Analysis of Lagrangian Statistics - (난류채널유동의 라그란지안 해석 (II) - 라그란지안 통계분석 -)

  • Choi, Ho-Jong;Lee, Sang-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.7
    • /
    • pp.867-876
    • /
    • 2003
  • The Lagrangian dispersion of fluid particles in inhomogeneous turbulence is investigated by a direct numerical simulation of turbulent channel flow. Four points Hermite interpolation in the homogeneous direction and Chebyshev polynomials in the inhomogeneous direction is adopted to simulate the fluid particle dispersion. An inhomogeneity of Lagrangian statistics in turbulent boundary layer is investigated by releasing many particles at several different wall-normal locations and tracking those particles. The fluid particle dispersions and Lagrangian structure functions of velocity are scaled by the Kolmogorov similarity. The auto-correlations of velocity and acceleration are shown at the different releasing locations. Effect of initial particle location on the dispersion is analyzed by the probability density function at the several downstreams and time instants.

Analysis of Shallow Water Flow in Curved Channel Using Dispersion Stresses Method (분산응력법을 이용한 곡선수로에서의 천수흐름 해석)

  • Song, Chang Geun;Seo, Il Won;Kim, Tae Won;Ahn, Jungkyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1785-1795
    • /
    • 2013
  • Most of the previous models for analysis of shallow water flow assumed the uniform velocity distributions over the flow depth so that they produced incorrect velocity prediction at meandering part due to the ignorance of secondary current. In this study, the vertical velocity profiles in longitudinal and transverse direction were decomposed as the mean and variation components, which resulted in additional dispersion stresses terms in momentum equations. The proposed model were applied at the channels with $30^{\circ}$, $90^{\circ}$, $270^{\circ}$ bends, and shallow water flow in curved channel was analyzed using dispersion stresses. The dispersion stresses acted as a sink or source in the momentum equations, which caused the transverse convection of momentum to shift from the inner bank to the outer bank.

1-D Shear Wave Velocity Structure of Northwestern Part of Korean Peninsula (한반도 북서부의 1차원 전단파 속도구조)

  • Kim, Tae Sung
    • Economic and Environmental Geology
    • /
    • v.52 no.6
    • /
    • pp.555-560
    • /
    • 2019
  • One-dimensional shear wave velocity structure of North Korea is constrained using short (2-sec) to long period (30-sec) Rayleigh waves generated from four seismic events in China. Rayleigh waves are well recorded at the five broadband seismic stations (BRD, SNU, CHNB, YKB, KSA) which are located near to the border between North and South Korea. Group velocities of fundamental-mode Rayleigh waves are estimated with the Multiple Filter Analysis and refined by using the Phase Matched Filter. Average group velocity dispersion curve ranging from 2.9 to 3.2 km/s, is inverted to constrain the shear wave velocity structures. Relatively low group velocity dispersion curves along the path between the events to BRD at period from 4 to 6 seconds may correspond to the sedimentary sequence of the West Korea Bay Basin (WKBB) in the Yellow Sea. The low velocity zone in deep layers (14-20 km) may be related to the deep sedimentary structure in Pyongnam basin. The fast shear wave velocity structure from the surface to the depth of 14 km is consistent with the existence of metamorphic rocks and igneous bodies in Nangrim massif and Pyongnam basin.

Dispersion Managed Optical Transmission Links with an Artificial Distribution of the SMF Length and Residual Dispersion per Span

  • Lee, Seong-Real
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.2
    • /
    • pp.75-82
    • /
    • 2014
  • Dispersion management (DM), optical phase conjugation (OPC), and the combination of DM and OPC are promising techniques to compensate for optical signal distortion due to group velocity dispersion and nonlinear Kerr effects. The system performance improvement in DM links combined with OPC has been reported; however, the fixed residual dispersion per span (RDPS) usually used in these links restricts the flexibility of link configuration. Thus, in this paper, a flexible optical link configuration with artificially distributed single-mode fiber (SMF) lengths and RDPS in the combination of DM and OPC is proposed. Simulation results show that the best artificial distribution pattern is the gradually descending distribution of SMF lengths and the gradually ascending distribution of RDPS, as the number of fiber spans is increased, regardless of the average RDPS, the optimal net residual dispersion, and the dispersion coefficient of the dispersion compensating fiber.

The Lamb Wave Equation in a Composite Plate with Anisotropy (이방성 복합재료 판에서의 램파 방정식)

  • Rhee, Sang-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.126-132
    • /
    • 2010
  • A Lamb wave guided by a plate structure has dispersive characteristics because phase and group velocity change with the variation of frequency and thickness. The Lamb wave has two modes, symmetric and anti-symmetric mode, which propagates symmetrically and non-symmetrically with respect to centerline. In this paper, the derivation of Lamb wave equation with anisotropic material property is investigated. The phase velocity and group velocity dispersion curves are shown using the stiffness matrix of composite materials with the variation of angle.

Thickness Measurement of Ni Thin Film Using Dispersion Characteristics of a Surface Acoustic Wave (표면파의 분산 특성을 이용한 Ni 박막의 두께 측정)

  • Park, Tae-Sung;Kwak, Dong-Ryul;Park, Ik-Keun;Kim, Miso;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.2
    • /
    • pp.171-175
    • /
    • 2014
  • In this study, we suggest a method to measure the thickness of thin films nondestructively using the dispersion characteristics of a surface acoustic wave propagating along the thin film surface. To measure the thickness of thin films, we deposited thin films with different thicknesses on a Si (100) wafer substrate by controlling the deposit time using the E-beam evaporation method. The thickness of the thin films was measured using a scanning electron microscope. Subsequently, the surface wave velocity of the thin films with different thicknesses was measured using the V(z) curve method of scanning acoustic microscopy. The correlation between the measured thickness and surface acoustic wave velocity was verified. The wave velocity of the film decreased as the film thickness increased. Therefore, thin film thickness can be determined by measuring the dispersion characteristics of the surface acoustic wave velocity.

Study on Material Fracture and Debris Dispersion Behavior via High Velocity Impact (고속충돌에 따른 재료 파괴 및 파편의 분산거동 연구)

  • Sakong, Jae;Woo, Sung-Choong;Kim, Jin-Young;Kim, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.11
    • /
    • pp.1065-1075
    • /
    • 2017
  • In this study, high velocity impact tests along with modeling of material behavior and numerical analyses were conducted to predict the dispersion behavior of the debris resulting from a high velocity impact fracture. For the impact tests, two different materials were employed for both the projectile and the target plate - the first setup employed aluminum alloy while the second employed steel. The projectile impacts the target plate with a velocity of approximately 1 km/s were enforced to generate the impact damages in the aluminum witness plate through the fracture debris. It was confirmed that, depending on the material employed, the debris dispersion behavior as well as the dispersion radii on the witness plate varied. A numerical analysis was conducted for the same impact test conditions. The smoothed particle hydrodynamics (SPH)-finite element (FE) coupled technique was then applied to model the fracture and damage upon the debris. The experimental and numerical results for the diameters of the perforation holes in the target plate and the debris dispersion radii on the witness plate were in agreement within a 5% error. In addition, the impact test using steel was found to be more threatening as proven by the larger debris dispersion radius.

TURBULENCE IN THE OUTSKIRTS OF THE MILKY WAY

  • Sanchez-Salcedo, F.J.;Santillan, A.;Franco, Jose
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.4
    • /
    • pp.171-177
    • /
    • 2007
  • In external galaxies, the velocity dispersion of the atomic hydrogen gas shows a remarkably flat distribution with the galactocentric radius. This has been a long-standing puzzle because if the gas velocity dispersion is due to turbulence caused by supernova explosions, it should decline with radius. After a discussion on the role of spiral arms and ram pressure in driving interstellar turbulence in the outer parts of galactic disks, we argue that the constant bombardment by tiny high-velocity halo clouds can be a significant source of random motions in the outer disk gas. Recent observations of the flaring of H I in the Galaxy are difficult to explain if the dark halo is nearly spherical as the survival of the streams of tidal debris of Sagittarius dwarf spheroidal galaxy suggests. The radial enhancement of the gas velocity dispersion (at R > 25 kpc) due to accretion of cloudy gas might naturally explain the observed flaring in the Milky Way. Other motivations and implications of this scenario have been highlighted.

Temporal and Spatial Spreading Characteristic of Drift Soil due to the Reclamation in the Pusan Port (해양 매립 및 준설토 투기에 따른 부유사 확산의 시.공간적 특성에 관한 연구)

  • 김용원;김종인;윤한삼;홍도웅
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.196-203
    • /
    • 2000
  • In this study, the evaluation method of diffusion characteristics of Suspended Soli&SS) and the generation limit(source and thick) are investigated, which is significantly affecting on marine examined by construction works such as dredging and reclamation. Dispersion characteristics of SS is examined by hydraulic tests and numerical works in consideration with the Pusan Port. Hydraulic model test was performed in 2-D wave flume to find the limit wave conditon of re-suspension of solid as well as the time dependent characteristics of settlement The results obtainded in the study are as follows; 1) The quantituative evaluation af SS is the basic parameter of marine environmental impact assessment in related with the port development The SS increases as the water content of sea bed solid increases and the density decreases. 2) The sea bed solid in Sinsundai area, Pusan Port has the water content range of 83~157% 3) The ratio of suspension velocity against settlement velocity is about 0.25 and SS concentration converges as the wave heigh. 4) The SS increases 2 time when time step increases 3 time(10 sec to 30 sec) in numerical simulation It means that the effect of the time step should be checked in detail to stable. The diffusion The diffusion coefficient are Affiected senstively in the dispersion process while sea ved friction coefficinet have not strong relation in the simulated area

  • PDF

Outflow Kinematics manifested by the Hα line : Gas outflows in Type 2 AGNs

  • Kang, Daeun;Woo, Jong-Hak;Bae, Hyun-jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.72.1-72.1
    • /
    • 2017
  • Energetic ionized gas outflows driven by active galactic nuclei (AGN) have been studied as a key phenomenon related to AGN feedback. To probe the kinematics of the gas in the narrow line region, [O III] ${\lambda}5007$ has been utilized in a number of studies, showing non-virial kinematic properties due to AGN outflows. We statistically investigate whether the $H{\alpha}$ emission line is influenced by AGN driven outflows, by measuring the kinematic properties based on the $H{\alpha}$ line profile, and by comparing them with those of [O III]. Using the spatially integrated spectra of ~37,000 Type 2 AGNs at z < 0.3 selected from the SDSS DR7, we find a non-linear correlation between $H{\alpha}$ velocity dispersion and stellar velocity dispersion, which reveals the presence of the non-gravitational component, especially for AGNs with a wing component in $H{\alpha}$. The large $H{\alpha}$ velocity dispersion and velocity shift of luminous AGNs are clear evidence of AGN outflow impacts on $H{\alpha}$ emitting gas, while relatively smaller kinematic properties compared to those of [O III] imply that the observed outflow effect on the $H{\alpha}$ line is weaker than the case of [O III].

  • PDF