• Title/Summary/Keyword: dispersion method

Search Result 1,631, Processing Time 0.032 seconds

Torsional wave dispersion in a bi-layered hollow cylinder with inhomogeneous initial stresses caused by internal and external radial pressures

  • Akbarov, Surkay D.;Bagirov, Emin T.
    • Structural Engineering and Mechanics
    • /
    • v.77 no.5
    • /
    • pp.571-586
    • /
    • 2021
  • The present paper studies the influence of the inhomogeneous initial stresses in the bi-layered hollow cylinder and it is assumed that these stresses are caused by the hydrostatic pressures acting on the interior and outer free surfaces of the cylinder. The study is made by utilizing the version of the three-dimensional linearized theory of elastic waves in bodies with initial stresses for which the initial stress-strain state in bodies is determined within the scope of the classical linear theory of elasticity. For the solution to the corresponding eigenvalue problem, the discrete-analytical method is employed. Numerical results are presented and analyzed for concrete selected pairs of materials. According to these results and their analyses, it is established that, unlike homogeneous initial stresses, the influence of the inhomogeneous initial stresses on the torsional wave dispersion has not only quantitative but also qualitative character. For instance, in particular, it is established that as a result of the initial stresses caused by the hydrostatic pressure acting in the interior free surface of the cylinder, the cut-off frequency appears for the fundamental dispersive mode and the values of this frequency increase with the intensity of this pressure.

Interpretation of Ground Wave Using Ray Method in Pekeris Waveguide (Pekeris 도파관에서 음선 접근법을 이용한 지면파 해석)

  • Choi, Jee-Woong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.208-212
    • /
    • 2009
  • Ground wave is an acoustic wave propagating at a sediment sound speed in the case that sediment sound speed is constant with depth, which is explained by modal dispersion effects. In this paper, the ground wave in time domain is simulated using the ray-based approach, which is possible because the modal dispersion can be explained by the guiding of energy caused by reflection and refraction in the waveguide geometry. For a Pekeris waveguide, the ground wave can be interpreted as a sequence of head waves, called a head wave sequence [Choi and Dahl, J. Acoust. Soc. Am. 119, 3660-3668 (2006)]. The ground wave is simulated by convolution of the source signal with a channel impulse response of the head wave sequence, which is compared with simulated signals obtained via a Fourier synthesis of a complex parabolic equation (PE) field.

A Method to Calculate Off-site Radionuclide Concentration for Multi-unit Nuclear Power Plant Accident (다수기 원자력발전소 사고 시 소외 방사성물질 농도 계산 방법)

  • Lee, Hye Rin;Lee, Gee Man;Jung, Woo Sik
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.6
    • /
    • pp.144-156
    • /
    • 2018
  • Level 3 Probabilistic Safety Assessment (PSA) is performed for the risk assessment that calculates radioactive material dispersion to the environment. This risk assessment is performed with a tool of MELCOR Accident Consequence Code System (MACCS2 or WinMACCS). For the off-site consequence analysis of multi-unit nuclear power plant (NPP) accident, the single location (Center Of Mass, COM) method has been usually adopted with the assumption that all the NPPs in the nuclear site are located at the same COM point. It was well known that this COM calculation can lead to underestimated or overestimated radionuclide concentration. In order to overcome this underestimation or overestimation of radionuclide concentrations in the COM method, Multiple Location (ML) method was developed in this study. The radionuclide concentrations for the individual NPPs are separately calculated, and they are summed at every location in the nuclear site by the post-processing of radionuclide concentrations that is based on two-dimensional Gaussian Plume equations. In order to demonstrate the efficiency of the ML method, radionuclide concentrations were calculated for the six-unit NPP site, radionuclide concentrations of the ML method were compared with those by COM method. This comparison was performed for conditions of constant weather, yearly weather in Korea, and four seasons, and the results were discussed. This new ML method (1) improves accuracy of radionuclide concentrations when multi-unit NPP accident occurs, (2) calculates realistic atmospheric dispersion of radionuclides under various weather conditions, and finally (3) supports off-site emergency plan optimization. It is recommended that this new method be applied to the risk assessment of multi-unit NPP accident. This new method drastically improves the accuracy of radionuclide concentrations at the locations adjacent to or very close to NPPs. This ML method has a great strength over the COM method when people live near nuclear site, since it provides accurate radionuclide concentrations or radiation doses.

Rubbing Cloth Evaluation Method for LCD Panels

  • Nakasu, Nobuaki;Honoki, Hideyuki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.328-330
    • /
    • 2004
  • In order to stabilize the rubbing process for liquid crystal panels, the authors developed "the sparkling dot area ratio evaluation method". This method quantifies the fiber length dispersion of rubbing cloths, which is a major cause of mura defects. The newly developed method enables quantitative evaluation of rubbing cloths and contributes to the improvement of rubbing process uniformity.

  • PDF

A Study on Mixed Methods for Reduction of Large Scale System (고차 시스템의 간소화를 위한 혼합 방법들에 대한 연구)

  • Kwon, Ki Ho;Choi, Keh Kun
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.3
    • /
    • pp.420-424
    • /
    • 1987
  • The model reduction methods of the linear time invariant continuous systems are proposed. The energy dispersion method is used to obtain the model denominator. And the model numerator is found by the modified residue method or the time moment matching method. The methods suggested are compared with the method suggested by Lucas and give good results.

  • PDF

Effective Thermal Conductivities $Al_2O_3$ Nanoparticles Suspended in Water with Low Concentration (1%미만의 부피비를 가지는 알루미나 나노유체의 유효 열전도도)

  • Lee, Byeong-Ho;Kim, Jun-Ho;Kong, Yu-Chan;Jang, Seok-Pil;Koo, Ja-Ye
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2177-2181
    • /
    • 2007
  • In this paper, effective thermal conductivities of water-based $Al_2O_3$-nanofluids with low concentration from 0.01 vol. % to 0.3 vol. % are experimentally obtained by transient hot wire method (THWM). The water-based $Al_2O_3$-nanofluids are manufactured by two-step method which is widely used. To examine suspension and dispersion characteristics of the water-based $Al_2O_3$-nanofluids, Zeta potential as well as transmission electron micrograph (TEM) is observed. We confirm the manufactured $Al_2O_3$-nanofluids have good suspension and dispersion. The effective thermal conductivities of the water-based $Al_2O_3$-nanofluids with low concentration are enhanced up to 1.64% compared with that of DI water at $21^{\circ}C$. In addition, experimental results are compared with theoretical results from Jang and Choi model.

  • PDF

Vibration of Pipes Coupled with Internal and External Fluids (내부 및 외부 유체와 연성된 파이프의 진동 해석)

  • Ryue, Jung-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.3
    • /
    • pp.142-150
    • /
    • 2012
  • The waveguide finite element (WFE) method is a useful numerical technique to investigate wave propagation along waveguide structures which have uniform cross-sections along the length direction ('x' direction). In the present paper, the vibration and radiated noise of the submerged pipe with fluid is investigated numerically by coupling waveguide finite elements and wavenumber boundary elements. The pipe and internal fluid are modelled with waveguide finite elements and the external fluid with wavenumber boundary elements which are fully coupled. In order to examine this model, the point mobility, dispersion curves and radiated power are calculated and compared for several different coupling conditions between the pipe and internal/external fluids.

The Growth Rate of Salix Gracilistyla Miq. and its Effect of Protecting Soil from Dispersion Depending on the Planting Method Applied to Shore-marginal Slope (습지 수제부에서 삽목방법에 따른 갯버들 생장율 및 토양 유실 억제 효과)

  • Lee, Chun-Seok;Ryu, Nam-Hyung
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.6 no.3
    • /
    • pp.56-68
    • /
    • 2003
  • The main purpose of this study was to verify the shore margin protection effect of the root system of Salix gracilistyla Miq. developed from direct sticking cuttings on wetland, through the measurement of root growth and comparison of soil slaking rate depending on the planting method applied to shore-marginal slope. Comparison of growth rate and soil dispersion rate was made between five planted slope and one naked slope. The planting methods applied to the planted slope were (a) horizontally layed burying of stick(45cm) bundle (b) horizontally layed covering the slope with sticks (c) horizontally fencing with normal cuttings(20cm) (d) elected sticking of normal cutting at equal distances (e) random scattering short cuttings(3-4cm). As results, the most effective planting method was horizontally layed burying, and in order to increase its efficiency scattering the live stem chips in 2-3cm on the slope is recommended. The growth of root was negatively regressive to the distance from water floor.

Fabrication and Characterization of Carbon Nanotube/Carbon Fiber/Polycarbonate Multiscale Hybrid Composites

  • Cho, Beom-Gon;Hwang, Sang-Ha;Park, Young-Bin
    • Composites Research
    • /
    • v.29 no.5
    • /
    • pp.269-275
    • /
    • 2016
  • Multiscale hybrid composites, which consist of polymeric resins, microscale fibers and nanoscale reinforcements, have drawn significant attention in the field of advanced, high-performance materials. Despite their advantages, multiscale hybrid composites show challenges associated with nanomaterial dispersion, viscosity, interfacial bonding and load transfer, and orientation control. In this paper, carbon nanotube(CNT)/carbon fiber(CF)/polycarbonate(PC) multiscale hybrid composite were fabricated by a solution process to overcome the difficulties associated with controlling the melt viscosity of thermoplastic resins. The dependence of CNT loading was studied by varying the method to add CNTs, i.e., impregnation of CF with CNT/PC/solvent solution and impregnation of CNT-coated CF with PC/solvent solution. In addition, hybrid composites were fabricated through surfactant-aided CNT dispersion followed by vacuum filtration. The morphologies of the surfaces of hybrid composites, as analyzed by scanning electron microscopy, revealed the quality of PC impregnation depends on the processing method. Dynamic mechanical analysis was performed to evaluate their mechanical performance. It was analyzed that if the position of the value of tan ${\delta}$ is closer to the ideal line, the adhesion between polymer and carbon fiber is stronger. The effect of mechanical interlocking has a great influence on the dynamic mechanical properties of the composites with CNT-coated CF, which indicates that coating CF with CNTs is a suitable method to fabricate CNT/CF/PC hybrid composites.

Numerical Simulation on Particle Dispersion in Axisymmetric Sudden-Expansion by Tracer Method (입자추적법에 의한 축대칭 급확대부의 입자확산현상 수치해석)

  • Park, Ounyoung;Yang, Hee Sung;Yim, Chung Sik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.766-774
    • /
    • 2017
  • Software has been developed for simulating particle dispersion in a circular pipe with sudden-expansion, which models the fuel feeding system of a combustor that uses metal powder like aluminum as fuel. The Lagrangian based discrete tracer point method was employed for a plug flow of particles that satisfies local turbulent velocity fluctuations. A radial velocity component was created to improve the flow turning outwards in the recirculation zone. The particle distribution patterns from both with and without the component were directly compared with the experiments near the reattachment.

  • PDF