• Title/Summary/Keyword: disease model animal

Search Result 451, Processing Time 0.028 seconds

Genome-wide association study for intramuscular fat content in Chinese Lulai black pigs

  • Wang, Yanping;Ning, Chao;Wang, Cheng;Guo, Jianfeng;Wang, Jiying;Wu, Ying
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.5
    • /
    • pp.607-613
    • /
    • 2019
  • Objective: Intramuscular fat (IMF) content plays an important role in meat quality. Identification of single nucleotide polymorphisms (SNPs) and genes related to pig IMF, especially using pig populations with high IMF content variation, can help to establish novel molecular breeding tools for optimizing IMF in pork and unveil the mechanisms that underlie fat metabolism. Methods: We collected muscle samples of 453 Chinese Lulai black pigs, measured IMF content by Soxhlet petroleum-ether extraction method, and genotyped genome-wide SNPs using GeneSeek Genomic Profiler Porcine HD BeadChip. Then a genome-wide association study was performed using a linear mixed model implemented in the GEMMA software. Results: A total of 43 SNPs were identified to be significantly associated with IMF content by the cutoff p<0.001. Among these significant SNPs, the greatest number of SNPs (n = 19) were detected on Chr.9, and two linkage disequilibrium blocks were formed among them. Additionally, 17 significant SNPs are mapped to previously reported quantitative trait loci (QTLs) of IMF and confirmed previous QTLs studies. Forty-two annotated genes centering these significant SNPs were obtained from Ensembl database. Overrepresentation test of pathways and gene ontology (GO) terms revealed some enriched reactome pathways and GO terms, which mainly involved regulation of basic material transport, energy metabolic process and signaling pathway. Conclusion: These findings improve our understanding of the genetic architecture of IMF content in pork and facilitate the follow-up study of fine-mapping genes that influence fat deposition in muscle.

Application of Animal Biomodel using Poultry: A Review (가금을 이용한 동물 바이오모델: 총설)

  • Seo, Dongwon;Lee, Jun Heon
    • Korean Journal of Poultry Science
    • /
    • v.43 no.4
    • /
    • pp.243-251
    • /
    • 2016
  • Chicken not only serves as a high-protein source to humans, but it is also used as a suitable biomodel for increasing livestock productivity and studying human diseases. Chickens have numerous advantages as model organisms mainly because of they are relatively convenient to manage due to their small body size and short generational interval. In addition, they have a small genome size and numerous genes have biologically similar functions to those of human and livestock animals. In this review, we investigated the chicken biomodel for human disease research and the use of this model for increasing livestock productivity. This summary could provide useful and basic information for further development of strategies for enhancing livestock production and human disease studies.

Animal Infectious Diseases Prevention through Big Data and Deep Learning (빅데이터와 딥러닝을 활용한 동물 감염병 확산 차단)

  • Kim, Sung Hyun;Choi, Joon Ki;Kim, Jae Seok;Jang, Ah Reum;Lee, Jae Ho;Cha, Kyung Jin;Lee, Sang Won
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.137-154
    • /
    • 2018
  • Animal infectious diseases, such as avian influenza and foot and mouth disease, occur almost every year and cause huge economic and social damage to the country. In order to prevent this, the anti-quarantine authorities have tried various human and material endeavors, but the infectious diseases have continued to occur. Avian influenza is known to be developed in 1878 and it rose as a national issue due to its high lethality. Food and mouth disease is considered as most critical animal infectious disease internationally. In a nation where this disease has not been spread, food and mouth disease is recognized as economic disease or political disease because it restricts international trade by making it complex to import processed and non-processed live stock, and also quarantine is costly. In a society where whole nation is connected by zone of life, there is no way to prevent the spread of infectious disease fully. Hence, there is a need to be aware of occurrence of the disease and to take action before it is distributed. Epidemiological investigation on definite diagnosis target is implemented and measures are taken to prevent the spread of disease according to the investigation results, simultaneously with the confirmation of both human infectious disease and animal infectious disease. The foundation of epidemiological investigation is figuring out to where one has been, and whom he or she has met. In a data perspective, this can be defined as an action taken to predict the cause of disease outbreak, outbreak location, and future infection, by collecting and analyzing geographic data and relation data. Recently, an attempt has been made to develop a prediction model of infectious disease by using Big Data and deep learning technology, but there is no active research on model building studies and case reports. KT and the Ministry of Science and ICT have been carrying out big data projects since 2014 as part of national R &D projects to analyze and predict the route of livestock related vehicles. To prevent animal infectious diseases, the researchers first developed a prediction model based on a regression analysis using vehicle movement data. After that, more accurate prediction model was constructed using machine learning algorithms such as Logistic Regression, Lasso, Support Vector Machine and Random Forest. In particular, the prediction model for 2017 added the risk of diffusion to the facilities, and the performance of the model was improved by considering the hyper-parameters of the modeling in various ways. Confusion Matrix and ROC Curve show that the model constructed in 2017 is superior to the machine learning model. The difference between the2016 model and the 2017 model is that visiting information on facilities such as feed factory and slaughter house, and information on bird livestock, which was limited to chicken and duck but now expanded to goose and quail, has been used for analysis in the later model. In addition, an explanation of the results was added to help the authorities in making decisions and to establish a basis for persuading stakeholders in 2017. This study reports an animal infectious disease prevention system which is constructed on the basis of hazardous vehicle movement, farm and environment Big Data. The significance of this study is that it describes the evolution process of the prediction model using Big Data which is used in the field and the model is expected to be more complete if the form of viruses is put into consideration. This will contribute to data utilization and analysis model development in related field. In addition, we expect that the system constructed in this study will provide more preventive and effective prevention.

Physiological approach of CADASIL animal model and its predictable implication (CADASIL 동물모델의 생리학적 접근 및 연구적 가치의 예측)

  • Jung, Sung-Cherl;Ko, Eun-A
    • Journal of Medicine and Life Science
    • /
    • v.16 no.3
    • /
    • pp.55-59
    • /
    • 2019
  • Cerebral vessels are functionally and structurally specialized to provide adequate blood flow to brain which shows high metabolic rates. Cerebral hemorrhage or ischemic infarction due to cerebrovascular injury or occlusion can cause the immediate brain damage, and if not treated rapidly, can lead to serious or permanent brain damages, and sometimes life-threatening. Unlike these popular cerebrovascular diseases, there are diseases caused by genetic problems. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is one of them. CADASIL does not show the high incidence, but it is considered to be significantly affected by regional obstructiveness such as islands and therefore, to be an important genetic disease in Jeju. This paper aims to summarize the possibility of animal model research that can provide preclinical data for CADASIL disease research and to evaluate its applicability in future research plans.

New therapeutic approach with extracellular vesicles from stem cells for interstitial cystitis/bladder pain syndrome

  • Dayem, Ahmed Abdal;Song, Kwonwoo;Lee, Soobin;Kim, Aram;Cho, Ssang-Goo
    • BMB Reports
    • /
    • v.55 no.5
    • /
    • pp.205-212
    • /
    • 2022
  • Interstitial cystitis/bladder pain syndrome (IC/BPS) is a debilitating chronic disorder characterized by suprapubic pain and urinary symptoms such as urgency, nocturia, and frequency. The prevalence of IC/BPS is increasing as diagnostic criteria become more comprehensive. Conventional pharmacotherapy against IC/BPS has shown suboptimal effects, and consequently, patients with end-stage IC/BPS are subjected to surgery. The novel treatment strategies should have two main functions, anti-inflammatory action and the regeneration of glycosaminoglycan and urothelium layers. Stem cell therapy has been shown to have dual functions. Mesenchymal stem cells (MSCs) are a promising therapeutic option for IC/BPS, but they come with several shortcomings, such as immune activation and tumorigenicity. MSC-derived extracellular vesicles (MSC-EVs) hold numerous therapeutic cargos and are thus a viable cell-free therapeutic option. In this review, we provide a brief overview of IC/BPS pathophysiology and limitations of the MSC-based therapies. Then we provide a detailed explanation and discussion of therapeutic applications of EVs in IC/BPS as well as the possible mechanisms. We believe our review will give an insight into the strengths and drawbacks of EV-mediated IC/BPS therapy and will provide a basis for further development.

Effects of Herbal Medicine (Gan Mai Da Zao Decoction) on Several Types of Neuropsychiatric Disorders in an Animal Model: A Systematic Review - Herbal medicine for animal studies of neuropsychiatric diseases -

  • Kim, Su Ran;Lee, Hye Won;Jun, Ji Hee;Ko, Byoung-Seob
    • Journal of Pharmacopuncture
    • /
    • v.20 no.1
    • /
    • pp.5-9
    • /
    • 2017
  • Objectives: Gan Mai Da Zao (GMDZ) decoction is widely used for the treatment of various diseases of the internal organ and of the central nervous system. The aim of this study is to investigate the effects of GMDZ decoction on neuropsychiatric disorders in an animal model. Methods: We searched seven databases for randomized animal studies published until April 2015: Pubmed, four Korean databases (DBpia, Oriental Medicine Advanced Searching Integrated System, Korean Studies Information Service System, and Research Information Sharing Service), and one Chinese database (China National Knowledge Infrastructure). The randomized animal studies were included if the effects of GMDZ decoction were tested on neuropsychiatric disorders. All articles were read in full and extracted predefined criteria by two independent reviewers. Results: From a total of 258 hits, six randomized controlled animal studies were included. Five studies used a Sprague Dawley rat model for acute psychological stress, post-traumatic stress disorders, and unpredictable mild stress depression whereas one study used a Kunming mouse model for prenatal depression. The results of the studies showed that GMDZ decoction improved the related outcomes. Conclusion: Regardless of the dose and concentration used, GMDZ decoction significantly improved neuropsychiatric disease-related outcomes in animal models. However, additional systematic and extensive studies should be conducted to establish a strong conclusion.

학술자료-2007년 광주 동물보호소 분석을 통한 효과적인 관리방안 제시

  • Myeong, Bo-Yeong
    • Journal of the korean veterinary medical association
    • /
    • v.44 no.6
    • /
    • pp.555-575
    • /
    • 2008
  • The role of animal shelter is important for animal welfare. From this year, the animal shelter have clinic system and veterinarian. So adoption rate increased to 45%, die of illness decresed to 258% in the dog and adoption rate increased to 489%, die of illness decreased to 258% in the cat. The disease and condition of each animal is improved, also belief of adoption is improved too. veterinarian is necessary to animal welfare and systemic, professional model of animal shelter will contribute to animal welfare.

  • PDF

Experimental In Vivo Models of Bacterial Shiga Toxin-Associated Hemolytic Uremic Syndrome

  • Jeong, Yu-Jin;Park, Sung-Kyun;Yoon, Sung-Jin;Park, Young-Jun;Lee, Moo-Seung
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.9
    • /
    • pp.1413-1425
    • /
    • 2018
  • Shiga toxins (Stxs) are the main virulence factors expressed by the pathogenic Stx-producing bacteria, namely, Shigella dysenteriae serotype 1 and certain Escherichia coli strains. These bacteria cause widespread outbreaks of bloody diarrhea (hemorrhagic colitis) that in severe cases can progress to life-threatening systemic complications, including hemolytic uremic syndrome (HUS) characterized by the acute onset of microangiopathic hemolytic anemia and kidney dysfunction. Shiga toxicosis has a distinct pathogenesis and animal models of Stx-associated HUS have allowed us to investigate this. Since these models will also be useful for developing effective countermeasures to Stx-associated HUS, it is important to have clinically relevant animal models of this disease. Multiple studies over the last few decades have shown that mice injected with purified Stxs develop some of the pathophysiological features seen in HUS patients infected with the Stx-producing bacteria. These features are also efficiently recapitulated in a non-human primate model (baboons). In addition, rats, calves, chicks, piglets, and rabbits have been used as models to study symptoms of HUS that are characteristic of each animal. These models have been very useful for testing hypotheses about how Stx induces HUS and its neurological sequelae. In this review, we describe in detail the current knowledge about the most well-studied in vivo models of Stx-induced HUS; namely, those in mice, piglets, non-human primates, and rabbits. The aim of this review is to show how each human clinical outcome-mimicking animal model can serve as an experimental tool to promote our understanding of Stx-induced pathogenesis.

Association between Single Nucleotide Polymorphisms of the Major Histocompatibility Complex Class II Gene and Newcastle Disease Virus Titre and Body Weight in Leung Hang Khao Chickens

  • Molee, A.;Kongroi, K.;Kuadsantia, P.;Poompramun, C.;Likitdecharote, B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.1
    • /
    • pp.29-35
    • /
    • 2016
  • The aim of the present study was to investigate the effect of single nucleotide polymorphisms in the major histocompatibility complex (MHC) class II gene on resistance to Newcastle disease virus and body weight of the Thai indigenous chicken, Leung Hang Khao (Gallus gallus domesticus). Blood samples were collected for single nucleotide polymorphism analysis from 485 chickens. Polymerase chain reaction sequencing was used to classify single nucleotide polymorphisms of class II MHC. Body weights were measured at the ages of 3, 4, 5, and 7 months. Titres of Newcastle disease virus at 2 weeks to 7 months were determined and the correlation between body weight and titre was analysed. The association between single nucleotide polymorphisms and body weight and titre were analysed by a generalized linear model. Seven single nucleotide polymorphisms were identified: C125T, A126T, C209G, C242T, A243T, C244T, and A254T. Significant correlations between log titre and body weight were found at 2 and 4 weeks. Associations between single nucleotide polymorphisms and titre were found for C209G and A254T, and between all single nucleotide polymorphisms (except A243T) and body weight. The results showed that class II MHC is associated with both titre of Newcastle disease virus and body weight in Leung Hang Khao chickens. This is of concern because improved growth traits are the main goal of breeding selection. Moreover, the results suggested that MHC has a pleiotropic effect on the titre and growth performance. This mechanism should be investigated in a future study.

Beneficial Effect of Bifidobacterium longum ATCC 15707 on Survival Rate of Clostridium difficile Infection in Mice

  • Yun, Bohyun;Song, Minyu;Park, Dong-June;Oh, Sejong
    • Food Science of Animal Resources
    • /
    • v.37 no.3
    • /
    • pp.368-375
    • /
    • 2017
  • Clostridium difficile infection (CDI) is the main cause of hospital-acquired diarrhea that can cause colitis or even death. The medical-treatment cost and deaths caused by CDI are increasing annually worldwide. New approaches for prevention and treatment of these infections are needed, such as the use of probiotics. Probiotics, including Bifidobacterium spp. and Lactobacillus, are microorganisms that confer a health benefit to the host when administered in adequate amounts. The effect of Bifidobacterium longum ATCC 15707 on infectious disease caused by C. difficile 027 was investigated in a mouse model. The survival rates for mice given the pathogen alone, and with live cells, or dead cells of B. longum were 40, 70, and 60%, respectively. In addition, the intestinal tissues of the B. longum-treated group maintained structural integrity with some degree of damage. These findings suggested that B. longum ATCC 15707 has a function in repressing the infectious disease caused by C. difficile 027.