• Title/Summary/Keyword: discrete systems

Search Result 1,856, Processing Time 0.035 seconds

A Consideration on the Applicability of the Discrete-Time Models of Linearly Time-Varying Systems to Digital Signal Processing (선형 시변 시스템에서의 이산 시간 모델의 신호처리 적용성 고찰)

  • Kwon, Soon-Man;Lee, Jong-Moo;Park, Min-Kook;Kim, Choon-Kyung;Cheon, Jong-Min
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.267-269
    • /
    • 2005
  • This paper describes a consideration on the sampling in linearly time-varying (LTV) systems in view of the convenience in digital signal processing. The relation between a continuous-time and a discrete-time system models is investigated for a simple linear time-invariant system. Based on the results of the investigation, we first consider discrete-time models for LTV systems, Then the simplicity of the models in terms of microprocessor-based digital signal processing is compared.

  • PDF

Observer Design for Discrete-Time Nonlinear Systems with Output Delay (출력지연을 갖는 이산시간 비선형 시스템의 관측기 설계)

  • Lee, Sung-Ryul
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.3
    • /
    • pp.26-30
    • /
    • 2012
  • This paper presents the observer design method for discrete-time nonlinear systems with delayed output. It is shown that by considering a nonlinear term of error dynamics as an additional state variable, the discrete-time nonlinear error dynamics with time delay can be transformed into the discrete-time linear one with time delay. Sufficient conditions for existence of state observer are characterized by linear matrix inequalities. Finally, an illustrative example is given in order to show the effectiveness of our design method.

Estimation error bounds of discrete-time optimal FIR filter under model uncertainty

  • Yoo, Kyung-Sang;Kwon, Oh-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.352-355
    • /
    • 1995
  • In this paper, estimation error bounds of the optimal FIR (Finite Impulse Response) filter, which is proposed by Kwon et al.[1, 2], are presented in discrete-time systems with the model uncertainty. Performance bounds are here represented by the upper bounds on the difference of the estimation error covariances between the nominal and real values in case of the systems with the noise or model parameter uncertainty. The estimation error bounds of the discrete-time optimal FIR filter is compared with those of the Kalman filter via a numerical example applied to the simulation problem by Toda and Patel[3]. Simulation results show that the former has robuster performance than the latter.

  • PDF

Algorithm for Transformation of Timed Petri Nets to DEVS Formalism (시간 페트리네트를 DEVS 형식론으로 변환하는 알고리즘)

  • 김영찬;김탁곤
    • Journal of the Korea Society for Simulation
    • /
    • v.11 no.2
    • /
    • pp.77-88
    • /
    • 2002
  • Petri nets is a widely used formalism for specification and analysis of concurrent systems which is a subclass of discrete event systems. The DEVS (Discrete Event System Specification) formalism provides a general framework for specification of discrete event systems in a hierarchical, modular form. Often, modeling a discrete event system may employ both Petri Nets and DEVS formalism. In such a case low-level operational logics are modeled by Petri Nets and high-level managements by the DEVS formalism. Analysis of the system requires simulation of the overall system. This paper presents an algorithm for transformation of Petri Nets to DEVS formalism. The transformation enables modelers to simulate an overall system, which consists of DEVS models and Petri Nets models, in a unified DEVS simulation environment such as DEVSim++. An example for such transformation will be given.

  • PDF

A New Robust Digital Sliding Mode Control with Disturbance Observer for Uncertain Discrete Time Systems

  • Lee, Jung-Hoon
    • Journal of IKEEE
    • /
    • v.15 no.2
    • /
    • pp.149-156
    • /
    • 2011
  • In this paper, a new discrete variable structure controller based on a new sliding surface and discrete version of the disturbance observer is suggested for the control of uncertain linear systems. The reaching phase is completely removed by introducing a new proposed sliding surface. The discrete version of the disturbance observer is derived for the effective compensation of the effect of uncertainties and disturbances. A corresponding control input with the disturbance compensation is selected to guarantee the quasi sliding mode on the predetermined sliding surface for guaranteeing the designed output in the sliding surface from any initial condition to the origin for all the parameter variations and disturbances. By using Lyapunov function, the closed loop stability and the existence condition of the quasi sliding mode is proved. Finally, an illustrative example is presented to show the effectiveness of the algorithm.

Characteristics of One Step Advanced Discrete Time D-Control with Time Delay in Noncolocated Flexible System (비병치 유연계의 시간지연 이산제어에서 한스텝선행 미분제어기의 특성)

  • Kang, Min-Sig
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1678-1685
    • /
    • 1993
  • This paper considers a time delay control of noncolocated flexible mechanical systems in discrete time domain. A stability criterion suggested in the previous paper is,extended in the consideration of infinite mode property of flexible systems and finite control sampling frequency. Based on the stability criterion, the one step advanced discrete time derivative control is suggested, which can stabilize infinite number of modes of a flexible system. The sensitivity analysis shows the robustness of the one step advanced control to the system parameter uncertainties and time delay errors. Application to a simply supported beam verifies the extended stability criterion and the effectiveness of the one step advanced D-control.

Workload Allocation Methods in Discrete Manufacturing Systems:Model and Optimization

  • Yingwen, Zheng
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1362-1366
    • /
    • 2003
  • Workload programming is allocating suitable workloads of production process according to the needs of products, which would minimize the total cost of both work and stock under some constraint conditions. In this paper, a production process flow chart of discrete manufacturing is presented by a Petri net, and the optimization model of workload-stock is established. An approach of the optimal workloads is provided by means of the integer matrix theory. An example is given to verify this method.

  • PDF

Modelling and controller design for hybrid system (하이브리드 시스템을 위한 모델 및 제어기 설계)

  • 박홍성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.348-352
    • /
    • 1993
  • A hybrid system contains both continuous variables and discrete event components. This paper presents the new control architecture for hybrid systems, which consists of a conventional controller for the continuous-time variable of the system, a supervisor for discrete event components of the system, and an interface for link between the controller and the plant. The presented controller is suitable for the system operating at the different operating conditions or for system being changing the plant model by enabling and disabling discrete events. This paper shows that the presented controller is better than the conventional controller.

  • PDF

On Stability of Discrete Time Nonlinear Systems with Slow-in-the-average Time Varying Inputs

  • Oh, Jun-Ho;Lim, Myo-Taeg
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.172.1-172
    • /
    • 2001
  • In this paper we show the stability analysis of the discrete nonlinear system with average bounded variation of the input. This is the discrete counterpart of that continuous one. We use the Lyapunov stability to prove the boundedness of the steady-state error. Also the allowable maximum variation bounds and the region of attraction are given as the function of the system parameters. Moreover, we prove the uniform convergence for the constant input.

  • PDF