• Title/Summary/Keyword: discrete systems

Search Result 1,856, Processing Time 0.019 seconds

Control of Discrete Time Nonlinear Systems with Input Delay (입력지연을 갖는 이산 시간 비선형 시스템의 제어)

  • Lee, Sung-Ryul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.6
    • /
    • pp.509-512
    • /
    • 2012
  • This paper presents the state feedback control design for discrete time nonlinear systems where there exists a time delay in input. It is shown that under some boundedness condition, the time delay nonlinear systems can be transformed into the time delay linear systems with time varying parameters. Sufficient conditions for existence of stabilizing state feedback controller are characterized by linear matrix inequalities. Finally, an illustrative example is given in order to show the effectiveness of our design method.

Combined discrete event and discrete time simulation framework for the improvement of shipbuilding process planning (조선 공정 계획의 수립 완성도 향상을 위한 이산 사건 및 이산 시간 혼합형 시뮬레이션 프레임워크)

  • Cha, Ju-Hwan;Roh, Myung-Il;Bang, Kyung-Woon;Lee, Kyu-Yeul
    • Journal of the Korea Society for Simulation
    • /
    • v.17 no.4
    • /
    • pp.71-80
    • /
    • 2008
  • In this study, a simulation framework, which can support developing various simulation systems for the improvement of process planning in shipbuilding such as the block erection, the block turn-over, and so on, is proposed. In addition, a simulation kernel, which is a key component of the simulation framework, is implemented according to the concept of the combined discrete event and discrete time simulation. To evaluate the efficiency and applicability of the proposed simulation framework, it is applied to the block erection process in shipbuilding. The result shows that the proposed simulation framework can provide the consistent, integrated development environment for a simulation system, as compared with existing studies and commercial simulation systems.

  • PDF

On a Stability Region of Liner Time-Varying Systems (선형시변 시스템의 안정도 영역에 관하여)

  • 최종호;장태정
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.7
    • /
    • pp.484-489
    • /
    • 1988
  • Sufficient conditions concerning the perturbation region of system parameters, which guarantee the asymptotic stability of linear time- varying systems, are presented. These conditions are obtained by Lyapunov function approach for continuous-time and discrete-time systems. Also, a computational algorithm using nonlinear programming is proposed for finding the maximum perturbation region which satisfies the sufficient condition for the continuous-time systems. The technique of finding the solution for the continuous-time systems can also be applied to the discrete-time systems. In the continuous-time case, it is shown by an example that the method proposed in this paper yields much larger perturbation region of parameters than other previously reported results. An example of the perturbation region of system paramters for the discrete-time system is also given.

  • PDF

Discrete event systems modeling and scheduling of flexible manufacturing systems

  • Tamura, Hiroyuki;Hatono, Itsuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1564-1569
    • /
    • 1991
  • In this paper we describe Flexible Manufacturing Systems (FMS) using Petri nets, since Petri nets provide a powerful tool for modeling dynamical behavior of discrete concurrent processes. We deal with off-Line and on-Line rule-based scheduling of FMS. The role of the rule-base is to generate appropriate priority rule for resolving conflicts, that is, for selecting one of enabled transitions to be fired in a conflict set of the Petri nets. This corresponds to select a part type to be processed in the FMS. Towards developing more Intelligent Manufacturing Systems (IMS) we propose a conceptual framework of a futuristic intelligent scheduling system.

  • PDF

Recursive Optimal State and Input Observer for Discrete Time-Variant Systems

  • Park, Youngjin;J.L.Stein
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.2
    • /
    • pp.113-120
    • /
    • 1999
  • One of the important challenges facing control engineers in developing automated machineryis to be able to monitor the machines using remote sensors. Observrs are often used to reconstruct the machine variables of interest. However, conventional observers are unalbe to observe the machine variables when the machine models, upon which the observers are based, have inputs that cannot be measured. Since this is often the case, the authors previsously developed a steady-state optimal state and input observer for time-invariant systems [1], this paper extends that work to time-variant systems. A recursive observer, similar to a Kalman-Bucy filter, is developed . This optimal observer minimizes the trace of the error variance for discrete , linear , time-variant, stochastic systems with unknown inputs.

  • PDF

A heuristic search on noninferior solutions to the Halkin-typed linear quantized optimal control problem with two performance functions

  • Munakata, Tsunehiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10b
    • /
    • pp.772-776
    • /
    • 1988
  • In quantized control systems, the control values can take only given discrete (e.g. integer) values. In case of dealing with the control problem on the discrete-time, final-stage fixed, quantized control systems with multidimensional performance functions, the first thing, new definition on noninferior solutions in these systems is necessary because of their discreteness in state variables, and the efficient search for those solutions at final-stage is unavoidable for seeking their discrete-time optimal controls to these systems. In this paper, to the quantized control problem given by the formulation of Halkin-typed linear control systems with two performance functions, a new definition on noninferior solutions of this system control problem and a heuristic effective search on these noninferior solutions are stated. By use of these concepts, two definitions on noninferior solutions and the algorithm consisted of 8 steps and attained by geometric approaches are given. And a numerical example using the present algorithm is shown.

  • PDF

Stability Bound for Time-Varying Uncertainty of Positive Time-Varying Discrete Systems with Time-Varying Delay Time (시변 지연시간을 갖는 양의 시변 이산시스템의 시변 불확실성의 안정범위)

  • Han, Hyung-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.6
    • /
    • pp.424-428
    • /
    • 2016
  • A simple new sufficient condition for asymptotic stability of the positive linear time-varying discrete-time systems, with unstructured time-varying uncertainty in delayed states, is established in this paper Compared with previous results that cannot be applied to time-varying systems; the time-varying system and delay time are considered simultaneously in this paper. The proposed conditions are compared with suitable conditions for the typical discrete-time systems. The considerations are illustrated by numerical examples of previous work.

Delay-Dependent Robust Stabilization and Non-Fragile Control of Uncertain Discrete-Time Singular Systems with State and Input Time-Varying Delays (상태와 입력에 시변 시간지연을 가지는 불확실 이산시간 특이시스템의 지연종속 강인 안정화 및 비약성 제어)

  • Kim, Jong-Hae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.2
    • /
    • pp.121-127
    • /
    • 2009
  • This paper deals with the design problem of robust stabilization and non-fragile controller for discrete-time singular systems with parameter uncertainties and time-varying delays in state and input by delay-dependent Linear Matrix Inequality (LMI) approach. A new delay-dependent bounded real lemma for singular systems with time-varying delays is derived. Robust stabilization and robust non-fragile state feedback control laws are proposed, which guarantees that the resultant closed-loop system is regular, causal and stable in spite of time-varying delays, parameter uncertainties, and controller gain variations. A numerical example is given to show the validity of the design method.

Simulation Environment of DEVS Models using MATLAB/Simulink (MATLAB/Simulink를 이용한 DEVS 모델의 시뮬레이션 환경 구축)

  • Seo, Kyung-Min;Sung, Chang-Ho;Kim, Tag-Gon
    • Journal of the Korea Society for Simulation
    • /
    • v.17 no.4
    • /
    • pp.219-227
    • /
    • 2008
  • The DEVS (Discrete Event Systems Specification) formalism supports specification of discrete event models in a hierarchical modular manner. MATLAB/Simulink is widely used for modeling, simulating and analyzing continuous and discrete time systems. This paper proposes a realization of the DEVS formalism in MATLAB/ Simulink. The proposed design enables to use a great amount of mathematical packages and functions included in MATLAB /Simulink. The design is also employed as real time simulation and hybrid system simulation which is a mixture of continuous systems and discrete event systems. The paper introduces Simulink-DEVS model, in which a simulation algorithm is embedded. The model consists of a Simulink-atomic model and a Simulink-coupled model. In addition, the time advance algorithm to simulate the model is suggested. The algorithm handles the time synchronization and the accommodation of different concepts specific to continuous and discrete event models. Two experimental results are presented for a pure discrete event model and a hybrid model.

  • PDF

Methodology for Discrete Event Modeling/Simulation of Mobile Agent Systems

  • Kim, Jae-Hyun;Kim, Tag-Gon
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.10a
    • /
    • pp.453-458
    • /
    • 2001
  • A mobile agent is an autonomous software agent capable of moving from one computer to another while performing its tasks. We view the agent as a discrete event system in the view of its computation and communication. This paper presents a methodology far modeling and simulation of such a mobile agent system as a discrete event system. The methodology is based on the Mobile Discrete Event System Specification (MDEVS) formalism and the associated simulation environment AgentSim which are previously developed by the authors. Within the methodology an atomic model represents dynamics of a mobile agent; a coupled model is modeled as mobile agent servers for representation of structural changes between atomic agents. Being based on the object-oriented environment the modeling methodology exploits inheritance of basic classes AtomicModel and CoupledModel provided by AgentSim.

  • PDF