Methodology for Discrete Event
Modeling/Simulation of Mobile Agent Systems

Jae-Hyun Kim and Tag Gon Kim

Systems Modeling Simulation Lab
Department of Electrical Engineering & Computer Science
KAIST
Daejeon, KOREA
E-mail: {jhkim,tkim}@smslab kaist.ac.kr

ABSTRACT

A mobile agent is an autonomous software agent capable of
moving from one computer to another while performing its
tasks. We view the agent as a discrete event system in the
view of its computation and communication. This paper
presents a methodology for modeling and simulation of such
a mobile agent system as a discrete event system. The
methodology is based on the Mobile Discrete Event System
Specification (MDEVS) formalism and the associated
simulation environment AgentSim which are previously
developed by the authors. Within the methodology an
atomic model represents dynamics of a mobile agent; a
coupled model is modeled as mobile agent servers for
representation of structural changes between atomic agents.
Being based on the object-oriented environment the
modeling methodology exploits inheritance of basic classes
AtomicModel and CoupledModel provided by AgentSim.

1 INTRODUCTION

A mobile agent is a software autonomous agent with
mobility. It is a piece of software that is designed to be able
to travel from one computer to another while executing its
jobs. A host computer provides a mobile agent server in
which a mobile agent can reside and use resources of the
computer. A mobile agent system consists of mobile agent
servers and mobile agents.

Mobile agent systems effectively reduce network traffic,
and help people to construct more robust and fault-tolerant
applications through their ability to operate asynchronously
and autonomously of the process that created them[5].

The building and debugging of mobile agent programs
are more complex than that of ordinary distributed programs

because the mobile agent systems require mobility while
others do not. Thus, a formal method for developing and
formulating the reasoning within a mobile agent system is
required. The modeling and simulation of a mobile agent
system in the development stage can significantly reduce
development costs and time.

Mobile agent systems are categorized into discrete
event systems with a capability for structural modification
when viewed from the perspective that the system is an
entire network within which mobile agents are traveling.
Therefore discrete event modeling and simulation
methodology is applied to mobile agent systems.

A formal modeling and simulation framework for
mobile agent systems has already been proposed
recently[1]{2]. For modeling of mobile agent systems,
Mobile Discrete Event System Specification (MDEVS)
formalism has been proposed. MDEVS formalism is able to
represent the dynamics of mobile agent systems including
movement and dynamic coupling. For simulation of mobile
agent systems, AgentSim is provided as a library, which
facilitates various functions required to simulate MDEVS
models.

This paper presents methodology for discrete event
modeling and simulation of mobile agent systems, and
focuses on how to model and simulate mobile agent systems
within the framework.

Section 2 briefly introduces the framework for
modeling/simulation of mobile agent systems. In Section 3,
we mention how to model mobile agent systems using
MDEVS formalism. Section 4 describes how to implement
MDEVS models with AgentSim and how to simulate them.
Section 5 concludes the paper.

- 453 -

2 OVERVIEW OF THE FRAMEWORK

Target Mobile Agent Systems
" Modeler Validation
I

Proposed F

¥
< MDEVSModels
.
~ AgentSim
L e
i Fxecution Fagine MDEVS Models Simutation Fngine . v
s o - vecain
s]
[— T R § ;
RN
Execution > Simulation Result D-+———

Figure 1 The Framework for Modeling/Simulation of
Mobile Agent Systems. |2]

Figure 1 shows the framework for modeling and simulation
of mobile agent systems introduced in [2]. The framework
covers the entire procedure of modeling and simulation of
mobile agent systems. A modeler uses MDEVS formalism
to specify the target mobile agent system. The MDEVS
formalism is an extension of the DEVS formalism{3] and
supports the specification of the mobile agents in a
hierarchical, modular manner. The MDEVS formalism is
able to express structural changes within the systems, which
include the creation, addition, deletion, and migration of
models and the dynamic changes of couplings between
models.

We have developed an environment called AgentSim,
which supports simulation and execution of the mobile
agent models. AgentSim is implemented as a library for
IBM’s Aglets[4]. With the simulation engine of the
AgentSim, a modeler can simulate the mobile agent models
to validate and verify the model. As a distributed simulation
environment by nature, AgentSim can simulate the large-
scale network models, which are examples of mobile agent
applications.

3 MODELING OF MOBILE AGENT SYSTEMS

This section shows how to model mobile agent systems
using MDEVS formalism. Based on the basic behavior
presented in Section 3.1, an example model of a mobile
agent is presented. Modeling of mobile agent servers using
the coupled model is described in Section 3.3.

3.1 Behavioral Patterns of Mobile Agents

The concept of a mobile agent is now emerging and mobile
agent applications are now being pioneered. In this first
stage of the new technology, some behavior patterns of
mobile agents are found and useful design patterns are
suggested[5].

Although the specific behavior of mobile agents may
differ depending on their missions that they get, the very
basic behavior is always the same; Arrival-Computation-
Departure. Most mobile agents move to the destination host,
and perform their mission using the computational power of
the host, and then leave to another destination. After
repeating this pattern until the agents achieve their goal,
they usually return home to report the result to the
commander.

The whole life cycle is described as follows:

A user or an agent creates mobile agents.

A user or an agent delegates a job to the created agent.
The agent moves to the designated host.

The agent uses resources or interacts with other agents
in that host.

The agent moves to another host and continues its job.
If the agent completes the job, it returns home and
reports the result to the user or the creator.

3.2 Modeling of Mobile Agents

Mobile agents are usually a single piece of software. It is
recommended that a mobile agent is modeled as an atomic
model because the agent is a single indivisible component in
the discrete event system.

Making an atomic model is specifying 7 elements
below:

AM =<X,Y, S, 8exts Sints A, ta>[1][2]13}

with the following constraints:

X : Input Events Set;

Y : Output Events Set;

S : States Set;

Sext - Ox X — S, External Transition Function;
where Q={(s,e)|seS0<e<ta(s)} : Total state
of the model;

Sim: O — S, Internal Transition Function;

A: @ — Y, Output Function;

ta: S — Rj,, Time Advance Function.

Figure 2 shows an example state transition diagram based
on the basic behavior in section 3.1. The Computing state
aggregates specific states required to do the delegated job.
This figure depicts only the basic pattern of Arrival-
Computation-Departure. Adding detailed behavior for the
mission in this example makes the mission-specific mobile
agent model.

- 454 -

? Input Event
! Cutput Event

Figure 2 State Transition Diagram of a Mobile Agent

3.3 Modeling of Mobile Agent Servers

A mobile agent server in the network provides

computational power and resources for mobile agents inside.

A server can allow direct access to resources such as hard
disks, memory or other programs. However, due to security
problems, a server may provide indirect ways to access
resources or may prevent it from accessing specific
resources. One method for indirect access is using a
stationary agent through which the visiting agents can safely
access resources (Figure 3). Also the agent server is a place

where agents can meet each other and exchange information.

Host Host

Stationary Agent
for DB Access

Query <
Visiting
Agent J+—

Result

(a) DB Access through Stationary Agent (b) Interaction with other agents

Figure 3 Modeling of Mobile Agent Servers

For the server provides various kinds of services and
agents arrive to and depart from the server, a coupled model
is suitable for modeling a mobile agent server. The services
can be modeled as a component in the server model. The
MDEVS coupled model is defined as follows.

CM=<X,Y, S, p, 5, {M;}, C, SELECT>{1][2]

with the following constraints:
X = XinIXch,
Xin: Input Events Set,
X ¢ Structure-Change Events Set;

Y : Output Events Set;

S : Structure-States Set;

{M;} eM’ : Activated Models Set,
where M’ : Total Models Set;

p: S 2M" Model Activation Function;
8: X, xS — S, Structure Transition Function;

C = { EIC, EOC, IC, SCC }: Couplings Set;
EIC c X, xUX; xS , External Input Coupling
H

Relation;
EOC c VY, xYx§ , External Output Coupling
H

Relation;
ICc VY xuX xS, Internal Coupling Relation;
i J

SCC c VY, x X, xS, Structure-Change Coupling
i

Relation;
SELECT : 2/ — ¢ — M, Select Function.

The coupled model has structure-state, structure
transition function, and structure-change coupling in order
to express dynamic coupling and model movement.
Structure-state represents current models and their couplings.
The change of structure-state means the change of inside
models and couplings. The change of a structure-state
occurs by structure transition function when the coupled
model receives a structure-change event through a structure-
change coupling. :

Figure 4 shows an example of dynamic coupling.
Initially Agent 1 is coupled with Agent 2. Agent 1 sends a
structure-change event Change through structure-change
coupling between Agent 1 and Host. The coupled model
Host receives the event and changes the structure-state by
structure transition function. The new structure-state
represents the second Host model as shown in Figure 4 (b).

Host Host

{b) Host deletes couplings between
Agent 1 and 2, creates couplings
between 1 and 3

(a) Agent 1 requests for Host
to change its coupling

Figure 4 Dynamic Coupling

Similar to this procedure, the migration of a mobile
agent between two mobile agent servers is represented.
Figure 5 depicts the migration sequence. The Agent sends

- 455 -

the structure-change event, Departure, to Host A and
Arrival to Host B at the same time. Host A deletes the
Agent and Host B adds the Agent. The associated couplings
in Host A are also deleted and new couplings are added in
Host B.

Host A Host B
Agent
Resource
{ Departure Arr:val

(a) Agent requests Host A for departure to Host B;
the event should be delivered to both Host A and B

Host B

Resource

(b) Host A deletes Agent and associated couplings;
Host B adds Agent and requested couplings

Host A

Figure 5 Migration of Agent from Host A to B

4 IMPLEMENTATION & SIMULATION

After you have finished modeling in MDEVS formalism,
implementation using AgentSim APIs and compilation are
required to perform the simulation.

4.1 Implementation

As a simulation environment for mobile agent systems, we
have developed AgentSim. It is a library based on IBM’s
Aglets. Aglet is a java-based mobile agent system
development toolkit. The reason why we do not develop a
C/C++ simulator and choose a java-based mobile agent
development toolkit as a simulation environment is that
modeling and simulation is one step for development.
Modeling and simulation on top of mobile agent systems
may reduce the gap between the model and the target
system; hence the rapid development of the system is
possiblef2].

Derived from the Aglet class, we built the Model class
that became a parent class of the AtomicModel and
CoupledModel class. Modelers are able to create their own
models by deriving a new class from the AtomicModel or
CoupledModel class. Basic functions for manipulating
tuples of an Atomic or Coupled model are provided (Table
1,Table 2).

Table 1 AgentSim API for Atomic Model

Atomic .
Model Function
X addInport {“Input”):;
msg.get (“Port”);
Y addOutport (“Output”) ;
msg.put (“Port”,Object) ;
S Statevar.put(“State”,”Initial”);
StateVar.get (“State”);
void ExtTransFn(Hashtable statevar, double
80" timeE, Messages msg);
5im void IntTransFn(Hashtable statevar)
void OQOutputFn{Hashtable stateVar, Messages
A msg)
ta double TimeAdvanceFn (Hashtable stateVar)

Table 2 AgentSim API for Coupled Model

Coupled .
Function
Model
X addInport (“*Inport”);
Y addOutport (“Output”);
S StateVar.put (“State”,”Initial”);

StatevVar.get (“State”);

createChild(model, "classname"”, arg);
p addChild (model) ;
deleteChild(model);

5 void StateTransFn (Hashtable statevar,

Messages message)

C addCoupling (src, "sport"”,dst, "dport");
deleteCoupling (model, "port"”):

Figure 6 and Figure 7 show the example code for Agent
and Agent Server. Agent is modeled and implemented as an
atomic model. The basic implementation of an atomic
model is to override 4 characteristic functions of atomic
model, i.e., ExtTransFn, IntTransFn, OutputFn,
TimeAdvanceFn. To initialize the model, the AgentSim
provides onCreation function.

AgentServer class is an example implementation of a
coupled model. The onCreation function should include the
creation of input / output ports, models, couplings between
models, and the creation and initialization of structure state.
The StateTransFn function handles state-change events
delivered to the model.

class Agent extends AtomicModel {

void onCreation (Object o)
{
// Called when the Agent is created.
// Create input/output ports
// Initialize State
addOutport ("Request”) ;
Statevar.put ("State”, "Initial™);

- 456 ~

void ExtTransFn (Hashtable stateVar, double timeE,
Messages msg)

// Handle External events

if(statevVar.get("State") .equals{(”onDispatch”)
&& msg.getPort().equals ("MoveOutDone"))

{

statevar.put ("State"”, "onArrive");

}

else ...

}

void IntTransFn(Hashtable stateVar)
{
// Handle Internal events
if(statevVar.get ("State").equals("Initial"))
{
stateVar.put ("State", "makeConnect”) ;
}
else ...
}

void OutputFn(Hashtable stateVar, Messages msg)
{

// Prepare output events and

// send them through output ports

if(stateVar.get("State").equals("onAxrrive")

&& Host.equals({Origin))

{

// Report results

msg.setPortval ("Report”, result);

}

else ...

}

double TimeAdvanceFn(Hashtable stateVar)
{

// return time

if{ ((String)StatevVar.get("State")).equals("Initia
l"))
return 10;
else
}
}

Figure 6 Example Code for Agent

class AgentServer extends CoupledModel ({

void onCreation(Object o)
{
// Called when the Agent is created.
// Create input/output ports
// Initialize Structure state
addOutport ("MoveOutRequest") ;
Statevar.put("State”, "Wait");

// create inside models
createChild(directory, "classname”, arg);

// add couplings between models
addCoupling{directory, "connect"”,
thismodel, "ConnectRequest”);

}

void StateTransFn(Hashtable
message)

stateVar, Messages

{
// Handle State-change events
if (message.getPort().equals("MoveIn"))
{
// Transition of Structure-state
StateVar.put (moveInModel, "In");
// Add new child model
addChild (moveInModel , moveInModel, "In");
// Add new coupling
addCoupling (moveInModel, "Request™,
directory, "in",moveInModel, "In");
// delete coupling
deleteCoupling (directory, "out"™);
// delete model
deleteChild (model, false, model, "Out”);
}
else

}

Figure 7 Example Code for Agent Server

4.2 Simulation

Like other Aglets, each simulation model of the compiled
form runs in Aglet servers. After uploading all models and
simulation control agents in appropriate Aglet servers in the
network, the simulation is ready to run. The partitioning of
the models among the servers is manually done. The
graphical viewer Tahiti of the agent server enables us to
check the current status of the agents[4].

5 CONCLUSION

In this paper we have presented a methodology for discrete
event modeling and simulation of mobile agent systems
using the developed framework.

We examined the basic pattern of behavior of a mobile
agent, and from that pattern we have suggested the basic
model of a mobile agent. However, modeling of the target
systems totally depends on modelers. This paper only shows
one possible modeling method. You can even model a big
complex mobile agent with a coupled model.

We hope that the methodology and framework for
modeling and simulation of mobile agent systems will help
developers of the systems and applications.

REFERENCE

[1] J Kim and T. Kim, “Framework for
Modeling/Simulation of Mobile Agent Systems”,
Proceedings of 2000 Conference on Al, Simulation
and Planning in High Autonomy Systems, pp.53-59,
2000.

~ 457 -

2] J. Kim and T. Kim, “DEVS-Based Framework for
Modeling/Simulation of Mobile Agent Systems”,
SIMULATION, June 2001. (accepted for publication)

[31 B. P. Zeigler, Multifacetted Modelling and Discrete
Event Simulation. Academic Press. 1984.

[4] D. B. Lange and M. Oshima, Programming and
Deploying Java Mobile Agents with Aglets. Addison-
Wesley. 1998.

[51 Y. Aridor and D. B. Lange, “Agent Design Patterns:
Elements of Agent Application Design,”
Proceedings of the Second International Conference
on Autonomous Agents, 1998.

[6] S.Franklin and A. Graesser. “Is It an Agent, or Just a
Program?: A Taxonomy for Autonomous Agents.” In
Proceedings of the Third International Workshop on
Agent Theories, Architectures, and Languages.
Springer-Verlag. 1996.

[71 I Kiniry and D. Zimmerman. “A Hands-on Look at
Mobile Java Agents.” JEEE Internet Computing,
July-August, 21-30. 1997.

[8] D. Wong, N. Paciorek and D. Moore. “Java-based

Mobile Agents.” Communications of the ACM 42, no.

3, 92-102. 1999.

[81 B. P. Zeigler, T. G. Kim and C. Lee. “Variable
structure modelling methodology: An Adaptive
computer architecture example.” Transactions of the
Society for Computer Simulation, vol. 7, no. 4, 291-
319.1991.

[10] 1. Satoh, “A Formalism for Hierarchical Mobile
Agents.” In Proceedings of the International
Symposium on Software Engineering for Parallel
and Distributed Systems, 165-172, 2000.

[11] F. J. Barros, “Modeling Formalisms for Dynamic
Structure Systems,” ACM Transactions on Modeling
and Computer Simulation, vol. 7, no. 4, pp. 501-515,
1997

AUTHOR BIOGRAPHY

JAE-HYUN KIM received the B. S. and M. S. degrees in
Electrical Engineering in 1998 and 2000, respectively, from
the Korea Advanced Institute of Science and Technology
(KAIST), Daejeon, Korea. His research interests include
methodology for modeling and simulation of discrete event
systems and mobile agent systems.

TAG GON KIM received his Ph.D. in computer
engineering with specialization in methodology for systems
modeling/simulation from University of Arizona, Tucson,
AZ, 1988. He was a Full-time Instructor at Communication
Engineering Department of Bukyung National University,
Pusan, Korea between 1980 and 1983, and an Assistant
Professor at Electrical and Computer Engineering at

University of Kansas, Lawrence, Kansas, U.S.A. from 1989
to 1991. He joined at Electrical Engineering Department of
KAIST, Daejeon, Korea in Fall, 1991 as an Assistant
Professor and has been a Full Professor since Fall, 1998. His
research interests include methodological aspects of systems
modeling simulation, analysis of computer/communication
networks, and development of simulation environments. He
has published more than 100 papers on systems modeling,
simulation and analysis in international journals/conference
proceedings. He is a co-author (with B.P. Zeigler and H.
Praehofer) of the book Theory of Modeling and Simulation
(2™ ed.), Academic Press, 2000. He is the Editor-in-Chief of
Transactions of Society for Computer Simulation published
by Society for Computer Simulation International(SCS). He
is a senior member of IEEE and SCS and a member of
ACM and Eta Kappa Nu.

- 458 -

