• Title/Summary/Keyword: discrete systems

Search Result 1,858, Processing Time 0.033 seconds

Logical Analysis of Real-time Discrete Event Control Systems Using Communicating DEVS Formalism (C-DEVS형식론을 이용한 실시간 이산사건 제어시스템의 논리 해석 기법)

  • Song, Hae Sang;Kim, Tag Gon
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.4
    • /
    • pp.35-46
    • /
    • 2012
  • As complexity of real-time systems is being increased ad hoc approaches to analysis of such systems would have limitations in completeness and coverability for states space search. Formal means using a model-based approach would solve such limitations. This paper proposes a model-based formal method for logical analysis, such as safety and liveness, of real-time systems at a discrete event system level. A discrete event model for real-time systems to be analyzed is specified by DEVS(Discrete Event Systems Specification) formalism, which specifies a discrete event system in hierarchical, modular manner. Analysis of such DEVS models is performed by Communicating DEVS (C-DEVS) formalism of a timed global state transition specification and an associated analysis algorithm. The C-DEVS formalism and an associated analysis algorithm guarantees that all possible states for a given system are visited in an analysis phase. A case study of a safety analysis for a rail road crossing system illustrates the effectiveness of the proposed method of the model-based approach.

The identification of continuous-time systems within a closed-loop

  • Bae, Chul-Min;Wada, Kiyoshi;Imai, Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.157-160
    • /
    • 1996
  • Physical systems axe generally continuous-time in nature. However as the data measured from these systems is generally in the form of discrete samples, and most modern signal processing is performed in the discrete-time domain, discrete-time models are employed. This paper describes methods for estimating the coefficients of continuous-time system within a closed loop control system. The method employs a recursive estimation algorithm to identify the coefficients of a discrete-time bilinear-operator model. The coefficients of the discrete-time bilinear-operator model closely approximate those of the corresponding continuous-time Laplace transform transfer function.

  • PDF

Efficient Computation of the DFT and IDFT in Communication Systems Using Discrete Multitone Modulation

  • Fertner, Antoni;Hyll, Mattias;Orling, Anders
    • Journal of Communications and Networks
    • /
    • v.1 no.2
    • /
    • pp.86-88
    • /
    • 1999
  • The Discrete Fourier Transform (DFT) and the Inverse Discrete Fourier Transform (IDFT) are commonly used in signal processing applications, in particular in digital communication sys-tems using the multi-carrier modulation principle. In such systems an IDFT is computed at the transmitter end, and a DFT at the re-ceiver end. This paper examines a technique of computations, for which only negligible differences appear between the DFT and the IDFT calculations while the number of arithmetic operations re-quired is substantially reduced. This offers significant advantages for the design of an IDFT/DFT processor for Discrete Multitone(DMT) systems.

  • PDF

Sensitivity Analysis of Discrete MIMO Systems Using singular Values (Singular Value를 이용한 이산계 다중입출력 시스템의 Sensitivity분석)

  • 강치우;이쾌희
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.10
    • /
    • pp.1507-1517
    • /
    • 1989
  • Singular values and their gradients have been used to analyze the stability and sensitivity of continuous multiloop systems. But this method has been limited to the discrete systems. This method is extended in this paper to analyze discrete systems directly in discrete domain. To do this, derived is the relationship in the disrete system between the stability margins and the minimum singular value of the return differene matrix, and also implemented is a method which computes singular value gradients. This method is applied to the lateralattitude control loop of a remotely piloted vehide both in continuous case and discrete case for verification of its utility.

  • PDF

A study on controller design based on safe Petri Net for discrite system control (비연속시스템제어를 위한 Safe Petri Net에 기초로한 제어기의 구성에 관한 연구)

  • 황창선;이재민
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.400-405
    • /
    • 1990
  • This paper deals with the design technique of the controller for the discrete system control using Extended Safe Petri Net which is deduced from Petri Net as its subclass with a specific constraint and which is introduced to develop the design and analysis for the discrete systems. First, we propose a construction matrix suitable for the discrete systems that represent the marking flows which are the dynamic behavior of the discrete systems. Next, we develop a method that can design the controller for the discrete system control by analyzing the proposed construction matrix into the incidence matrix of Extended Safe Petri Net. Finally, the validity of the proposed method is shown by using the incidence matrix and matrix equation of Extended Safe Petri Net model.

  • PDF

Asymptotic Stability of Discrete Time Linear Systems with Time Varying Delays (시변시간지연을 갖는 이산시간 선형시스템의 점근안정도)

  • Song, Seong-Ho;Kim, Jeom-Keun;Kang, Chang-Ik
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.5
    • /
    • pp.580-585
    • /
    • 1999
  • This paper deals with the stability of discrete time linear systems with time varying delays in state. In this paper, the magnitude of time-varying delays is assumed to be upper-bouded. The stability of discrete time linear systems with time-varying delays in state is related with the stability of discrete time linear systems with constant time delay in state. To show this, a new Lyapunov function is proposed. Using this Lyapunov function, a sufficient condition for the asymptotic stability is derived.

  • PDF

Hybrid Systems Modeling and Simulation - PartI: Modeling and Simulation Methodology (하이브리드 시스템 모델링 및 시뮬레이션 - 제1부: 모델링 및 시뮬레이션 방법론)

  • 임성용;김탁곤
    • Journal of the Korea Society for Simulation
    • /
    • v.10 no.3
    • /
    • pp.1-14
    • /
    • 2001
  • A hybrid system is defined as a mixture of continuous systems and discrete event systems. This paper first proposes a framework for hybrid systems modeling, called Hybrid Discrete Event System Specification (HDEVS) formalism. It then presents a method for simulators interoperation in which a continuous system simulator and a discrete event simulator are executed together in a cooperative manner. The formalism can specify a hybrid system in a way that a continuos system and a discrete event system are separately modeled by their own specification formalisms with a support of well-defined interface. We call such interface an A/E converter for analog-to- event conversion and an E/A converter for event-to-analog conversion. Simulators interoperation is based on the concept of pre-simulation in which simulation time for a continuous simulator is advanced in accordance with a discrete event simulator.

  • PDF

Discrete-Time Sliding Mode Controller for Linear Time-Varying Systems with Disturbances

  • Park, Kang-Bak
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.244-247
    • /
    • 2000
  • In this paper, a discrete-time sliding mode controller for linear time-varying systems with disturbances is proposed. The proposed method guarantees the systems state is globally uniformly ultimately bounded(G.U.U.B) under the existence of time-varying disturbances.

  • PDF

Fault-tolerant robust supervisor for timed discrete event systems

  • Park, Seong-Jin;Li, Jong-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.411-413
    • /
    • 1997
  • This paper presents the problem of fault-tolerant robust supervisory control of timed discrete event systems (DESs). First the concept of faults is quantitatively defined in timed DESs and fault tolerable event sequences are presented as a desired legal language. Given a timed DES with model uncertainty, the conditions for the existence of a supervisor which always guarantees fault tolerable event sequences embedded in the system are derived.

  • PDF

Variable Structure Control for Discrete-time Nonlinear Systems

  • Han, So-Hee;Cho, Byung-Sun;Park, Kang-Bak
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1414-1417
    • /
    • 2003
  • In this paper, sliding mode controller for discrete-time nonlinear systems with uncertainties and disturbances are proposed. The concept of time-delay control (TDC) which consists of estimating the uncertain dynamics of the system through past observations of the system response is used. The proposed controller guarantees that the closed-loop system states are globally uniformly ultimately bounded (GUUB). It is also shown that the closed-loop system states are globally uniformly asymptotically stable (GUAS) if uncertainties are constant.

  • PDF