• Title/Summary/Keyword: discrete optimization

검색결과 511건 처리시간 0.023초

시뮬레이션 최적화 문제 해결을 위한 이산 입자 군집 최적화에서 샘플수와 개체수의 효과 (The Effect of Sample and Particle Sizes in Discrete Particle Swarm Optimization for Simulation-based Optimization Problems)

  • 임동순
    • 산업경영시스템학회지
    • /
    • 제40권1호
    • /
    • pp.95-104
    • /
    • 2017
  • This paper deals with solution methods for discrete and multi-valued optimization problems. The objective function of the problem incorporates noise effects generated in case that fitness evaluation is accomplished by computer based experiments such as Monte Carlo simulation or discrete event simulation. Meta heuristics including Genetic Algorithm (GA) and Discrete Particle Swarm Optimization (DPSO) can be used to solve these simulation based multi-valued optimization problems. In applying these population based meta heuristics to simulation based optimization problem, samples size to estimate the expected fitness value of a solution and population (particle) size in a generation (step) should be carefully determined to obtain reliable solutions. Under realistic environment with restriction on available computation time, there exists trade-off between these values. In this paper, the effects of sample and population sizes are analyzed under well-known multi-modal and multi-dimensional test functions with randomly generated noise effects. From the experimental results, it is shown that the performance of DPSO is superior to that of GA. While appropriate determination of population sizes is more important than sample size in GA, appropriate determination of sample size is more important than particle size in DPSO. Especially in DPSO, the solution quality under increasing sample sizes with steps is inferior to constant or decreasing sample sizes with steps. Furthermore, the performance of DPSO is improved when OCBA (Optimal Computing Budget Allocation) is incorporated in selecting the best particle in each step. In applying OCBA in DPSO, smaller value of incremental sample size is preferred to obtain better solutions.

유전알고리즘에 의한 철근콘크리트 골조의 이산형 구조설계 (Discrete Structural Design of Reinforced Concrete Frame by Genetic Algorithm)

  • Ahn, Jeehyun;Lee, Chadon
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.127-134
    • /
    • 1999
  • An optimization algorithm based on Genetic Algorithm(GA) is developed for discrete optimization of reinforced concrete plane frame by constructing databases. Under multiple loading conditions, discrete optimum sets of reinforcements for both negative and positive moments in beams, their dimensions, column reinforcement, and their column dimensions are found. Construction practice is also implemented by linking columns and beams by group ‘Connectivity’between columns located in the same column line is also considered. It is shown that the developed genetic algorithm was able to reach optimum design for reinforced concrete plane frame construction practice.

  • PDF

이산공간에서 순차적 알고리듬(SOA)을 이용한 전역최적화 (Global Optimization Using a Sequential Algorithm with Orthogonal Arrays in Discrete Space)

  • 조범상;이정욱;박경진
    • 대한기계학회논문집A
    • /
    • 제29권10호
    • /
    • pp.1369-1376
    • /
    • 2005
  • In structural design, the design variables are frequently selected from certain discrete values. Various optimization algorithms have been developed fDr discrete design. It is well known that many function evaluations are needed in such optimization. Recently, sequential algorithm with orthogonal arrays (SOA), which is a search algorithm for a local minimum in a discrete space, has been developed. It considerably reduces the number of function evaluations. However, it only finds a local minimum and the final solution depends on the initial values of the design variables. A new algorithm is proposed to adopt a genetic algorithm (GA) in SOA. The GA can find a solution in a global sense. The solution from the GA is used as the initial design of SOA. A sequential usage of the GA and SOA is carried out in an iterative manner until the convergence criteria are satisfied. The performance of the algorithm is evaluated by various examples.

다중 섬 유전자 알고리즘 기반 A60 급 격벽 관통 관의 방화설계에 대한 이산변수 근사최적화 (Approximate Optimization with Discrete Variables of Fire Resistance Design of A60 Class Bulkhead Penetration Piece Based on Multi-island Genetic Algorithm)

  • 박우창;송창용
    • 한국기계가공학회지
    • /
    • 제20권6호
    • /
    • pp.33-43
    • /
    • 2021
  • A60 class bulkhead penetration piece is a fire resistance system installed on a bulkhead compartment to protect lives and to prevent flame diffusion in a fire accident on a ship and offshore plant. This study focuses on the approximate optimization of the fire resistance design of the A60 class bulkhead penetration piece using a multi-island genetic algorithm. Transient heat transfer analysis was performed to evaluate the fire resistance design of the A60 class bulkhead penetration piece. For approximate optimization, the bulkhead penetration piece length, diameter, material type, and insulation density were considered discrete design variables; moreover, temperature, cost, and productivity were considered constraint functions. The approximate optimum design problem based on the meta-model was formulated by determining the discrete design variables by minimizing the weight of the A60 class bulkhead penetration piece subject to the constraint functions. The meta-models used for the approximate optimization were the Kriging model, response surface method, and radial basis function-based neural network. The results from the approximate optimization were compared to the actual results of the analysis to determine approximate accuracy. We conclude that the radial basis function-based neural network among the meta-models used in the approximate optimization generates the most accurate optimum design results for the fire resistance design of the A60 class bulkhead penetration piece.

MONOTONIC OPTIMIZATION TECHNIQUES FOR SOLVING KNAPSACK PROBLEMS

  • Tran, Van Thang;Kim, Jong Kyu;Lim, Won Hee
    • Nonlinear Functional Analysis and Applications
    • /
    • 제26권3호
    • /
    • pp.611-628
    • /
    • 2021
  • In this paper, we propose a new branch-reduction-and-bound algorithm to solve the nonlinear knapsack problems by using general discrete monotonic optimization techniques. The specific properties of the problem are exploited to increase the efficiency of the algorithm. Computational experiments of the algorithm on problems with up to 30 variables and 5 different constraints are reported.

PV 시스템의 최적 배치 문제를 위한 이산 PSO에서의 규칙 기반 하이브리드 이산화 (Rule-based Hybrid Discretization of Discrete Particle Swarm Optimization for Optimal PV System Allocation)

  • 송화창;고재환;최병욱
    • 한국지능시스템학회논문지
    • /
    • 제21권6호
    • /
    • pp.792-797
    • /
    • 2011
  • 본 논문은 배전망에서의 PV (photovoltaic) 발전 시스템의 최적 배치 문제를 이산 입자 군집 최적화 (DPSO, discrete particle swarm optimization)를 이용하여 해를 구할 때 DPSO에 포함되어야 하는 이산화 단계를 위한 하이브리드 이산화 기법의 적용에 대하여 논한다. 이를 위해 PSO 반복단계에서 목적 함수 값과 최적화 속도를 입력 파라미터로 하는 규칙 기반 전문가 시스템을 제안하고 이산 변수를 포함하여 표현되는 PV 시스템 배치 문제의 최적해를 구하는데 적용하였다. 다수준 이산화를 위하여 간단한 라운딩과 sigmoid 함수를 이용한 3단계 및 5단계 이산화 기법을 하이브리드 형태로 적용하였다. 규칙 기반 전문가 시스템을 적용하여 각 PSO 과정에서 적절한 이산화 기법을 선택함으로써 기존의 DPSO보다 좋은 성능의 최적화가 가능하도록 하였다.

A Study of Frequency Mixing Approaches for Eddy Current Testing of Steam Generator Tubes

  • Jung, Hee-Jun;Song, Sung-Jin;Kim, Chang-Hwan;Kim, Dea-Kwang
    • 비파괴검사학회지
    • /
    • 제29권6호
    • /
    • pp.579-585
    • /
    • 2009
  • The multifrequency eddy current testing(ECT) have been proposed various frequency mixing algorithms. In this study, we compare these approaches to frequency mixing of ECT signals from steam generator tubes; time-domain optimization, discrete cosine transform-domain optimization. Specifically, in this study, two different frequency mixing algorithms, a time-domain optimization method and a discrete cosine transform(DCT) optimization method, are investigated using the experimental signals captured from the ASME standard tube. The DCT domain optimization method is computationally fast but produces larger amount of residue.

이산형 설계변수를 갖는 철그콘크리트보의 최적설계 (Optimi Design for R.C. Beam with Discrete Variables)

  • 구봉근;한상훈;김홍룡
    • 콘크리트학회지
    • /
    • 제5권4호
    • /
    • pp.167-178
    • /
    • 1993
  • 본 논문의 목적은 R.C.보 최적설계에 이산수학계획법을 적용하여 상세설계를 포함하는 실제설계의 가능성을 연구하기 위한 것이다. 이산최적문제에서 설계변수로는 단면의 총높이, 폭, 유효높이 및 길이방향철근의 단면적 그리고 전단철근의 단면적과 길이 방향철근의 절단점과 같은 상세변수 등이 고려되었다. 목적함수는 경비함수로 취했으며, 제약조건으로는 강도설계법에 의한 설계휨강도, 전단강도, 연성, 사용성, 콘크리트 덮개 및 철근간격, 복부보강 그리고 정착길이와 길이방향철근의 절단점 등에 관한 시방서 요구사항을 고려하여 문제를 형성하였다. 이산변수를 갖는 최적설계를 효율적으로 실행하기 위해 첫째단계에서 Feasible Direction Methed를 이용하여 연속최적해를 구했으며, 둘째단계에서 분기한계법(Branch and bound method)을 이용하여 이산최적해를 얻는 최적화 알고리즘을 제안하였다. 제안된 알고리즘의 신뢰도를 검증하기 위해 2개의 이산설계변수를 갖는 수치예에 적용하여 도해법 및 rounde-up method와 그 결과를 비교하였고, 단순지지된 R.C.보 및 2경간연속 R.C.보에 적용하여 제안된 알고리즘의 신뢰도, 효율성 및 적용성을 입증하였다.

유전적 알고리즘에 의한 선체 구조물의 이산적 최적설계 (Discrete Optimum Design of Ship Structures by Genetic Algorithm)

  • 양영순;김기화;유원선
    • 대한조선학회논문집
    • /
    • 제31권4호
    • /
    • pp.147-156
    • /
    • 1994
  • 선체의 구조설계는 최적화 방법을 이용하여 상당히 오래 전부터 최적 구조설계 방법을 사용해 오고 있었으나, 대부분의 경우, 설계변수(設計變數)를 연속적인 실수(實數)로 가정하여 최적해를 구하거나, 아니면 실수(實數)와 정수(整數)가 혼합된 문제에 대해서는 뚜렷한 해결 방안을 제시하지 못하고 있는 실정이다. 특히 최적해의 국부(局部) 최적성 내지는 이산적(離散的) 변수 특성이 있는 최적설계 문제에 대해서는 몇개의 초기치를 사용하여 얻어진 최적해를 상호 비교하여 주어진 문제의 전체적(全體的) 최적해를 구하고자 하였다. 많은 경우 이러한 방법은 확실한 대안이 되지 못하고 본질적인 문제점은 미해결로서 남아 있어 왔다. 그래서 본 연구에서는 생물의 진화 법칙을 모사한 유전적(遺傳的) 알고리즘을 이용하여 선체 구조물의 최적설계시 고려해야 하는 보강재의 갯수를 정수(整數)로 취급하는 문제라든지 판 두께와 같이 이산적(離散的) 특성을 갖는 설계변수 문제 등(等)이 최적설계에 미치는 영향을 검토하여 보다 일반적인 최적화 방법으로서 유전적(遺傳的) 알고리즘의 유용성을 확인하였다.

  • PDF

불연속 최적해의 흔들림 현상과 제어에 관한 연구 (Oscillation Phenomena of the discrete Optimum Solutions and control)

  • Choi, Chang-Koon;Jin, Ho-Kyun;Kim, Jong-Soo;Lee, Hwan-Woo
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.9-16
    • /
    • 1994
  • In the discrete optimum design, occasionally, the solutions oscillate between the feasible and the infeasible resions during the series of redesigns of members with discrete sections. This phenomenon may be caused inherently by the discontinuity of variables of commercially available sections in the database. In this paper, in-depth investigation into the oscillation in the discrete optimization and its control has been conducted. When the structure is optimized through element optimization, the oscillation can be divided into two categories, local and global oscillations. An algorithm which controls these phenomena is suggested and numerical examples demonstrate the oscillation in optimum solutions and the effectiveness of the control strategy suggested here.

  • PDF