• Title/Summary/Keyword: discrete optimization

Search Result 508, Processing Time 0.034 seconds

Prediction of the remaining time and time interval of pebbles in pebble bed HTGRs aided by CNN via DEM datasets

  • Mengqi Wu;Xu Liu;Nan Gui;Xingtuan Yang;Jiyuan Tu;Shengyao Jiang;Qian Zhao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.339-352
    • /
    • 2023
  • Prediction of the time-related traits of pebble flow inside pebble-bed HTGRs is of great significance for reactor operation and design. In this work, an image-driven approach with the aid of a convolutional neural network (CNN) is proposed to predict the remaining time of initially loaded pebbles and the time interval of paired flow images of the pebble bed. Two types of strategies are put forward: one is adding FC layers to the classic classification CNN models and using regression training, and the other is CNN-based deep expectation (DEX) by regarding the time prediction as a deep classification task followed by softmax expected value refinements. The current dataset is obtained from the discrete element method (DEM) simulations. Results show that the CNN-aided models generally make satisfactory predictions on the remaining time with the determination coefficient larger than 0.99. Among these models, the VGG19+DEX performs the best and its CumScore (proportion of test set with prediction error within 0.5s) can reach 0.939. Besides, the remaining time of additional test sets and new cases can also be well predicted, indicating good generalization ability of the model. In the task of predicting the time interval of image pairs, the VGG19+DEX model has also generated satisfactory results. Particularly, the trained model, with promising generalization ability, has demonstrated great potential in accurately and instantaneously predicting the traits of interest, without the need for additional computational intensive DEM simulations. Nevertheless, the issues of data diversity and model optimization need to be improved to achieve the full potential of the CNN-aided prediction tool.

Optimal Cost Design of Pipe Network Systems Using Genetic Algorithms (遺傳子 알고리즘을 이용한 管網시스템의 最適費用 設計)

  • Park, Yeong-Su;Kim, Jong-U;Kim, Tae-Gyun;Kim, Jung-Hun
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.1
    • /
    • pp.71-81
    • /
    • 1999
  • The objective of this study is to develop a model which can design an optimal pipe network system of least cost while satisfying all the design constraints including hydraulic constraints using a genetic algorithm technique. Hydraulic constraints interfaced with the simulation program(KYPIPE) checked feasible solution region. Genetic algorithm(GA) technique is a relatively new optimization technique. The GA is known as a very powerful search and optimization technique especially when solving nonlinear programming problems. The model developed in this study selects optimal pipe diameters in the form of commercial discrete sizes using the pipe diameters and the pumping powers as decision variables. The model not only determines the optimal diameters and pumping powers of pipe network system but also satisfies the discharge and pressure requirements at demanding nodes. The model has been applied to an imaginary and an existing pipe network systems. One system is adopted from journal papers which has been used as an example network by many other researchers. Comparison of the results shows compatibility of the model developed in this study. The model is also applied to a system in Goyang city in order to check the model applicability to finding of optimal pumping powers. It has been found that the developed model can be successfully applied to optimal design of pipe network systems in a relatively simple manner.

  • PDF

Fast Bayesian Inversion of Geophysical Data (지구물리 자료의 고속 베이지안 역산)

  • Oh, Seok-Hoon;Kwon, Byung-Doo;Nam, Jae-Cheol;Kee, Duk-Kee
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.3
    • /
    • pp.161-174
    • /
    • 2000
  • Bayesian inversion is a stable approach to infer the subsurface structure with the limited data from geophysical explorations. In geophysical inverse process, due to the finite and discrete characteristics of field data and modeling process, some uncertainties are inherent and therefore probabilistic approach to the geophysical inversion is required. Bayesian framework provides theoretical base for the confidency and uncertainty analysis for the inference. However, most of the Bayesian inversion require the integration process of high dimension, so massive calculations like a Monte Carlo integration is demanded to solve it. This method, though, seemed suitable to apply to the geophysical problems which have the characteristics of highly non-linearity, we are faced to meet the promptness and convenience in field process. In this study, by the Gaussian approximation for the observed data and a priori information, fast Bayesian inversion scheme is developed and applied to the model problem with electric well logging and dipole-dipole resistivity data. Each covariance matrices are induced by geostatistical method and optimization technique resulted in maximum a posteriori information. Especially a priori information is evaluated by the cross-validation technique. And the uncertainty analysis was performed to interpret the resistivity structure by simulation of a posteriori covariance matrix.

  • PDF

Optimal Design of Branched Water Supply System with GIS (GIS를 이용한 분기형 관로의 최적설계)

  • Kim, Joong-Hoon;Yeon, Sang-Ho;Geem, Zong-Woo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.4 no.2 s.8
    • /
    • pp.55-61
    • /
    • 1996
  • The objective of this paper is to show an optimal design model for branched water supply system which also can find the optimal location of pumping stations using linear programming. GIS is utilized in this model to better handle the data and the results front the optimization. The developed model considers hydraulic influences of some appurtenances such as supply tunnels and a filtration plant The model also considers tunnel construction cost which should be treated differently from pipe construction cost Different from other models presently available, the model guarantees a nonnegative pressure at every junction node in the system. The objective function includes annual operation cost (electricity rate) ill addition to initial construction cost, thus producing a more reasonable decision. The model selects the optimal diameter not in the form of continuous number but in the form of commercial discrete diameter (pipe size) using the pipe lengths as decision variables instead of pipe diameters. The model not only determines the optimal pumping head for each pumping station but also finds the optimal location and number of pumping stations. GIS is used to handle hydraulic and budgetary data automatically and to visualize the results for the of optimal design of the system. The model has been applied to an existing water supply system. 'The results show that the optimization model with the aid of GIS is helpful in the decision-nulling process for the design of more economical systems, and can be dot into practice successfully.

  • PDF

An Efficient Hardware-Software Co-Implementation of an H.263 Video Codec (하드웨어 소프트웨어 통합 설계에 의한 H.263 동영상 코덱 구현)

  • 장성규;김성득;이재헌;정의철;최건영;김종대;나종범
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.4B
    • /
    • pp.771-782
    • /
    • 2000
  • In this paper, an H.263 video codec is implemented by adopting the concept of hardware and software co-design. Each module of the codec is investigated to find which approach between hardware and software is better to achieve real-time processing speed as well as flexibility. The hardware portion includes motion-related engines, such as motion estimation and compensation, and a memory control part. The remaining portion of theH.263 video codec is implemented in software using a RISC processor. This paper also introduces efficient design methods for hardware and software modules. In hardware, an area-efficient architecture for the motion estimator of a multi-resolution block matching algorithm using multiple candidates and spatial correlation in motion vector fields (MRMCS), is suggested to reduce the chip size. Software optimization techniques are also explored by using the statistics of transformed coefficients and the minimum sum of absolute difference (SAD)obtained from the motion estimator.

  • PDF

Thermal Analysis of a Radial Heat Sink with Radiation and Natural Convection (복사 열전달을 고려한 자연대류 원형 히트싱크 열전달 해석)

  • Yu, Seung-Hwan;Jang, Dae-Seok;Lee, Kwan-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.4
    • /
    • pp.385-390
    • /
    • 2012
  • A radial heat sink, adopted to LED(light emitting diode) downlight, was optimized. Discrete transfer radiation model (DTRM) was used to calculate radiation heat transfer, and numerical model was verified with experimental results. The effects of number of fin, long fin length and middle fin length on overall thermal resistance and radiation heat transfer were analyzed. As the emissivity increased, thermal resistance decreased due to the increment of radiation heat transfer. The radial heat sink was optimized and optimum number of long fins is 19~28, optimum length of long fin is about half of radius of heat fink and optimum fin ratio is 0.4~0.7.

A Fast Inter Mode Decision Algorithm Considering Quantization Parameter in H.264 (H.264 표준에서 양자화 계수를 고려한 고속 인터모드 결정 방법)

  • Kim, Geun-Yong;Ho, Yo-Sung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.6 s.312
    • /
    • pp.11-19
    • /
    • 2006
  • The recent video coding standard H.264 employs the rate-distortion optimization (RDO) method for choosing the best coding mode; however, it causes a large amount of encoding time. Thus, in order to reduce the encoding time, we need a fast mode decision algorithm. In this paper, we propose a fast inter mode decision algorithm considering quantization parameter (QP). The occurrence of best modes depends on QP. In order to reflect these characteristics, we consider the coded block pattern (CBP) which has 0 value when all quantized discrete cosine transform (DCT) coefficients are zero. We also use the early SKIP mode decision and early $16{\times}16$ mode decision methods. By computer simulations, we have verified that the proposed algorithm requires less encoding time than the fast inter mode decision method of the H.264 reference software for the Baseline and Main profiles by 19.6% and 18.8%, respectively.

Optimal Capacitor Placement and Operation for Loss Minimzation and Improvement of Voltage Profile in Distribution System (배전계통의 손실감소 및 전압 보상을 위한 커패시터 최적 배치 및 운용)

  • 송현선
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.3
    • /
    • pp.48-55
    • /
    • 1999
  • Ths paper presents an optimization method which determines locations and size of capacitors simultaneously while minimizing power losses and improving voltage profile in radial distribution systems. Especially, the cost function associated with capacitor pla.cerrent is considered as step function due to banks of standard discrete capacities. Genetic algorithms(GA) are used to obtain efficiently the solution of the cost function associated with capacitors which is non-continuous and non-differentiable function. The strings in GA consist of the node nwnber index and size of capacitors to be installed. The length mutation operator, which is able to change the length of strings in each generation, is used. The proposed Jrethod which determines locations and size of capacitors simultaneously can reduce power losses and improve voltage proftle with capacitors of minimum size. Its efficiency is proved through the arolication in radial distribution systems.ystems.

  • PDF

A New Remeshing Technique of Tetrahedral Elements by Redistribution of Nodes in Subdomains and its Application to the Finite Element Analysis (영역별 절점 재분포를 통한 사면체 격자 재구성 방법 및 유한요소해석에의 적용)

  • Hong J.T.;Lee S.R.;Yang D.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.607-610
    • /
    • 2005
  • A remeshing algorithm using tetrahedral elements has been developed, which is adapted to the mesh density map constructed by a posteriori error estimation. In the finite element analyses of metal forging processes, numerical error increases as deformation proceeds due to severe distortion of elements. In order to reduce the numerical error, the desired mesh sizes in each region of the workpiece are calculated by a posteriori error estimation and the density map is constructed. Piecewise density functions are then constructed with the radial basis function in order to interpolate the discrete data of the density map. The sample mesh is constructed based on the point insertion technique which is adapted to the density function and the mesh size is controlled by moving and deleting nodes to obtain optimal distribution according to the mesh density function and the quality optimization function as well. After finishing the redistribution process of nodes, a tetrahedral mesh is constructed with the redistributed nodes, which is adapted to the density map and resulting in good mesh quality. A goodness and adaptability of the constructed mesh is verified with a testing measure. The proposed remeshing technique is applied to the finite element analyses of forging processes.

  • PDF

Framework design of simulation-based ship production execution system(SPEXS) in a shipyard (시뮬레이션 기반 조선생산실행시스템 프레임워크 설계)

  • Lee, Kwang-Kook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.9
    • /
    • pp.1854-1864
    • /
    • 2011
  • Production planning is one of the most important activities in shipbuilding enterprises. Shop-floor supervisors and planners still do not have enough information to effectively analyze shop operations because of the difference between production planning and shop-floor scheduling. In this paper, process analysis was conducted between production planning and shop-floor control to clarify the difference, and the necessity of the manufacturing execution system(MES) was derived in a shipyard. Therefore, the simulation-based ship production execution system(SPEXS) was defined by analyzing characteristics of MES. The architectural functions of the system were deducted from the process of requirement analysis. The SPEXS' framework was constructed on the basis of the architectural functions. This framework will provide more reliable production schedules and allow engineers to plan and control shop operations in real-time.