• Title/Summary/Keyword: discrete data

Search Result 1,244, Processing Time 0.031 seconds

Design of the Digital Waveform Filter Using the Memory in the RDS Encoder (RDS 부호화기에서 메모리를 이용한 디지틀 파형 여파기의 설계)

  • 송형규;김한종;홍대식;강창언
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.5
    • /
    • pp.611-618
    • /
    • 1993
  • A common requirement in digital communication systems is the generation of prescribed shape. The purpose of this paper is implement an efficient digital waveform filter by using the look-up table in the RDS(Radio Data System) encoder. And it has been shown that transmitted data can be recovered without an error. In order to implement an efficient waveform filter, the control algorithm is designed. For the purpose of composing an IC, the digital waveform filter is implemented by using the discrete elements. Moreover in this paper it has been proved that the proposed digital waveform filter can be applied to the RDS encoder.

  • PDF

SAMPLING ERROR ANALYSIS FOR SOIL MOISTURE ESTIMATION

  • Kim, Gwang-Seob;Yoo, Chul-sang
    • Water Engineering Research
    • /
    • v.1 no.3
    • /
    • pp.209-222
    • /
    • 2000
  • A spectral formalism was applied to quantify the sampling errors due to spatial and/or temporal gaps in soil moisture measurements. The lack of temporal measurements of the two-dimensional soil moisture field makes it difficult to compute the spectra directly from observed records. Therefore, the space-time soil moisture spectra derived by stochastic models of rainfall and soil moisture was used in their record. Parameters for both models were tuned with Southern Great Plains Hydrology Experiment(SGP'97) data and the Oklahoma Mesonet data. The structure of soil moisture data is discrete in space and time. A design filter was developed to compute the sampling errors for discrete measurements in space and time. This filter has the advantage in its general form applicable for all kinds of sampling designs. Sampling errors of the soil moisture estimation during the SGP'97 Hydrology Experiment period were estimated. The sampling errors for various sampling designs such as satedlite over pass and point measurement ground probe were estimated under the climate condition between June and August 1997 and soil properties of the SGP'97 experimental area. The ground truth design was evaluated to 25km and 50km spatial gap and the temporal gap from zero to 5 days.

  • PDF

A Fast Parameter Estimation of Time Series Data Using Discrete Fourier Transform (이산푸리에변환과 시계열데이터의 고속 파라미터 추정)

  • Shim, Kwan-Shik;Nam, Hae-Kon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.7
    • /
    • pp.265-272
    • /
    • 2006
  • This paper describes a method of parameter estimation of time series data using discrete Fourier transform(DFT). DFT have been mainly used to precisely and rapidly obtain the frequency of a signal. In a dynamic system, a real part of a mode used to learn damping characteristics is a more important factor than the frequency of the mode. The parameter estimation method of this paper can directly estimate modes and parameters, indicating the characteristics of a dynamic system, on the basis of the Fourier transform of the time series data. Real part of a mode estimates by subtracting a frequency of the Fourier spectrum corresponding to 0.707 of a magnitude of the peak spectrum from a peak frequency, or subtracting a frequency of the power spectrum corresponding to 0.5 of the peak power spectrum from a peak frequency, or comparing the Fourier(power) spectrum ratio. Also, the residue and phase of time signal calculate by simple equation with the real part of the mode and the power spectrum that have been calculated. Accordingly, the proposed algorithm is advantageous in that it can estimate parameters of the system through a single DFT without repeatedly calculating a DFT, thus shortening the time required to estimate the parameters.

Data fusion based improved HOSM observer for smart structure control

  • Arunshankar, J.
    • Smart Structures and Systems
    • /
    • v.24 no.2
    • /
    • pp.257-266
    • /
    • 2019
  • The benefit of data fusion in improving the performance of Higher Order Sliding Mode (HOSM) observer is brought out in this paper. This improvement in the performance of HOSM observer, resulted in the improvement of active vibration control of a piezo actuated structure, when controlled by a Discrete Sliding Mode Controller (DSMC). The structure is embedded with two piezo sensors for measuring the first two vibrating modes. The fused output of sensors is applied to the HOSM observer for generating state estimates, these states generated are applied to the DSMC, designed for the fourth order linear time invariant model of the structure. In the simulation study, the structure is excited at the first and second mode resonance. It is found that better vibration suppression is obtained, when the states generated by the fused output of sensors is applied as controller input, than the vibration suppression obtained by applying the states generated by using individual sensor output. The closed loop performance of DSMC obtained with HOSM observer is compared with the closed loop performance obtained with the conventional observer. Results obtained shows that better vibration suppression is obtained when the states generated by HOSM observer is applied as controller input.

Using a Lagrangian-Lagrangian approach for studying flow behavior inside a bubble column

  • YoungWoo Son;Cheol-O Ahn;SangHwan Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4395-4407
    • /
    • 2023
  • Bubble columns are widely encountered in several industries, especially in the field of nuclear safety. The Eulerian-Eulerian and the Eulerian-Lagrangian methods are commonly used to investigate bubble columns. Eulerian approaches require additional tasks such as strict volume conservation at the interface and a predefined well-structured grid. In contrast, the Lagrangian approach can be easily implemented. Hence, we introduce a fully Lagrangian approach for the simulation of bubble columns using the discrete bubble model (DBM) and moving particle semi-implicit (MPS) methods. Additionally, we propose a rigorous method to estimate the volume fraction accurately, and verified it through experimental data and analytical results. The MPS method was compared with the experimental data of Dambreak. The DBM was verified by analyzing the terminal velocity of a single bubble for each bubble size. It agreed with the analytical results for each of the four drag correlations. Additionally, the improved method for calculating the volume fraction showed agreement with the Ergun equation for the pressure drop in a packed bed. The implemented MPS-DBM was used to simulate the bubble column, and the results were compared with the experimental results. We demonstrated that the MPS-DBM was in quantitative agreement with the experimental data.

Bayesian Analysis of a Zero-inflated Poisson Regression Model: An Application to Korean Oral Hygienic Data (영과잉 포아송 회귀모형에 대한 베이지안 추론: 구강위생 자료에의 적용)

  • Lim, Ah-Kyoung;Oh, Man-Suk
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.3
    • /
    • pp.505-519
    • /
    • 2006
  • We consider zero-inflated count data, which is discrete count data but has too many zeroes compared to the Poisson distribution. Zero-inflated data can be found in various areas. Despite its increasing importance in practice, appropriate statistical inference on zero-inflated data is limited. Classical inference based on a large number theory does not fit unless the sample size is very large. And regular Poisson model shows lack of St due to many zeroes. To handle the difficulties, a mixture of distributions are considered for the zero-inflated data. Specifically, a mixture of a point mass at zero and a Poisson distribution is employed for the data. In addition, when there exist meaningful covariates selected to the response variable, loglinear link is used between the mean of the response and the covariates in the Poisson distribution part. We propose a Bayesian inference for the zero-inflated Poisson regression model by using a Markov Chain Monte Carlo method. We applied the proposed method to a Korean oral hygienic data and compared the inference results with other models. We found that the proposed method is superior in that it gives small parameter estimation error and more accurate predictions.

Estimation of Parameters of the Linear, Discrete, Input-Output Model (선형 이산화 입력-출력 모형의 매개변수 결정에 관한 연구)

  • 강주복;강인식
    • Journal of Environmental Science International
    • /
    • v.2 no.3
    • /
    • pp.193-199
    • /
    • 1993
  • This study has two objectives. One is developing the runoff model for Hoe-Dong Reservoir basin located at the upstream of Su-Young River in Pusan. To develop the runoff model, basic hydrological parameters - curve number to find effective rainfall, and storage coefficient, etc. - should be estimated. In this study, the effective rainfall was calculated by the SCS method, and the storage coefficient used in the Clark watershed routing was cited from the report of P.E.B. The other is the derivation of transfer function for Hoe-Dong Reservoir basin. The linear, discrete, input-output model which contained six parameters was selected, and the parameters were estimated by the least square method and the correlation function method, respectively. Throughout this study, rainfall and flood discharge data were based on the field observation in 1981.8.22 - 8.23 (typhoon Gladys). It was observed that the Clark watershed routing regenerated the flood hydrograph of typhoon Gladys very well, and this fact showed that the estimated hydrological parameters were relatively correct. Also, the calculated hydrograph by the linear, discrete, input-output model showed good agreement with the regenerated hydrograph at Hoe-Dong Dam site, so this model can be applicable to other small urban areas. Key Words : runoff, effective rainfall, SCS method, clark watershed iou상ng, hydrological parameters, parameter estimation, least square method, correlation function method, input-output model, typhoon gladys.

  • PDF

Automatic Assembly Task of Electric Line Using 6-Link Electro-Hydraulic Manipulators

  • Kyoungkwan Ahn;Lee, Byung-Ryong;Yang, Soon-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.12
    • /
    • pp.1633-1642
    • /
    • 2002
  • Uninterrupted power supply has become indispensable during the maintenance task of active electric power lines as a result of today's highly information-oriented society and increasing demand of electric utilities. The maintenance task has the risk of electric shock and the danger of falling from high place. Therefore it is necessary to realize an autonomous robot system using electro-hydraulic manipulator because hydraulic manipulators have the advantage of electric insulation. Meanwhile it is relatively difficult to realize autonomous assembly tasks particularly in the case of manipulating flexible objects such as electric lines. In this report, a discrete event control system is introduced for automatic assembly task of electric lines into sleeves as one of the typical task of active electric power lines. In the implementation of a discrete event control system, LVQNN (linear vector quantization neural network) is applied to the insertion task of electric lines to sleeves. In order to apply these proposed control system to the unknown environment, virtual learning data for LVQNN is generated by fuzzy inference. By the experimental results of two types of electric lines and sleeves, these proposed discrete event control and neural network learning algorithm are confirmed very effective to the insertion tasks of electric lines to sleeves as a typical task of active electric power maintenance tasks.

A Study for the Improvement of the Fault Decision Capability of FRTU using Discrete Wavelet Transform and Neural Network (이산 웨이블릿 변환과 신경회로망을 이용한 FRTU의 고장판단 능력 개선에 관한 연구)

  • Hong, Dae-Seung;Ko, Yoon-Seok;Kang, Tae-Ku;Park, Hak-Yeol;Yim, Hwa-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.7
    • /
    • pp.1183-1190
    • /
    • 2007
  • This paper proposes the improved fault decision algorithm using DWT(Discrete Wavelet Transform) and ANNs for the FRTU(Feeder Remote Terminal Unit) on the feeder in the power distribution system. Generally, the FRTU has the fault decision scheme detecting the phase fault, the ground fault. Especially FRTU has the function for 2000ms. This function doesn't operate FI(Fault Indicator) for the Inrush current generated in switching time. But it has a defect making it impossible for the FI to be operated from the real fault current in inrush restraint time. In such a case, we can not find the fault zone from FI information. Accordingly, the improved fault recognition algorithm is needed to solve this problem. The DWT analysis gives the frequency and time-scale information. The neural network system as a fault recognition was trained to distinguish the inrush current from the fault status by a gradient descent method. In this paper, fault recognition algorithm is improved by using voltage monitoring system, DWT and neural network. All of the data were measured in actual 22.9kV power distribution system.

Damage prediction in the vicinity of an impact on a concrete structure: a combined FEM/DEM approach

  • Rousseau, Jessica;Frangin, Emmanuel;Marin, Philippe;Daudeville, Laurent
    • Computers and Concrete
    • /
    • v.5 no.4
    • /
    • pp.343-358
    • /
    • 2008
  • This article focuses on concrete structures submitted to impact loading and is aimed at predicting local damage in the vicinity of an impact zone as well as the global response of the structure. The Discrete Element Method (DEM) seems particularly well suited in this context for modeling fractures. An identification process of DEM material parameters from macroscopic data (Young's modulus, compressive and tensile strength, fracture energy, etc.) will first be presented for the purpose of enhancing reproducibility and reliability of the simulation results with DE samples of various sizes. The modeling of a large structure by means of DEM may lead to prohibitive computation times. A refined discretization becomes required in the vicinity of the impact, while the structure may be modeled using a coarse FE mesh further from the impact area, where the material behaves elastically. A coupled discrete-finite element approach is thus proposed: the impact zone is modeled by means of DE and elastic FE are used on the rest of the structure. The proposed approach is then applied to a rock impact on a concrete slab in order to validate the coupled method and compare computation times.