• 제목/요약/키워드: discrete control variables

검색결과 82건 처리시간 0.036초

비연속시간 생존분석을 적용한 청소년의 최초 가출 발생시점에 대한 영향요인 연구 (Determinants of the Onset of Adolescent Runaway Behavior : An Application of Discrete-Time Survival Analysis)

  • 홍세희;김동기
    • 아동학회지
    • /
    • 제28권2호
    • /
    • pp.217-233
    • /
    • 2007
  • The present study investigated the effects of individual, family, school, and community factors on the onset of adolescent runaway behavior. Using the Korean Youth Panel data(n=3,118), discrete-time survival analysis was applied for research purposes. Results showed that the likelihood of onset of adolescent runaway behavior increased sharply during the early middle school years. The variables of self-control, aggression, parents' divorce, paternal abuse, attachment with parents, and number of delinquent peers were associated with the likelihood of runaway behavior. These results suggest that special attention should be paid to adolescents in the early middle school years and that various preventive programs, e.g., aggression and stress management, and peer relations programs, should be developed and implemented.

  • PDF

간편 간접추론방법을 이용한 비선형 퍼지 PI+D 제어기의 설계 (Design of Nonlinear Fuzzy PI+D Controller Using Simplified Indirect Inference Method)

  • 채창현;이상태;류창렬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 G
    • /
    • pp.2839-2842
    • /
    • 1999
  • This paper describes the design of fuzzy PID controller using simplified indirect inference method. First, the fuzzy PID controller is derived from the conventional continuous time linear PID controller. Then the fuzzification, control-rule base, and defuzzification using SIIM in the design of the fuzzy controller are discussed in detail. The resulting controller is a discrete time fuzzy version of the conventional PID controller, which has the same linear structure. but are nonlinear functions of the input signals. The proposed controller enhances the self-tuning control capability, particularly when the process to be controlled is nonlinear. When the SIIM is applied, the fuzzy inference results can be calculated with splitting fuzzy variables into each action component and are determined as the functional form of corresponding variables. So the proposed method has the capability of the high speed inference and adapting with increasing the number of the fuzzy input variables easily. Computer simulation results have demonstrated the superior to the control performance of the one proposed by D. Misir et al.

  • PDF

Active control of a flexible structure with time delay

  • Cai, Guo-Ping;Yang, Simon X.
    • Structural Engineering and Mechanics
    • /
    • 제20권2호
    • /
    • pp.191-207
    • /
    • 2005
  • Time delay exists inevitably in active control, which may not only degrade the system performance but also render instability to the dynamic system. In this paper, a novel active controller is developed to solve the time delay problem in flexible structures. By using the independent modal space control method, the differential equation of the controlled mode with time delay is obtained from the time-delay system dynamics. Then it is discretized and changed into a first-order difference equation without any explicit time delay by augmenting the state variables. The modal controller is derived based on the augmented system using the discrete variable structure control method. The switching surface is determined by minimizing a discrete quadratic performance index. The modal coordinate is extracted from sensor measurements and the actuator control force is converted from the modal one. Since the time delay is explicitly included throughout the entire controller design without any approximation, the system performance and stability are guaranteed. Numerical simulations show that the proposed controller is feasible and effective in active vibration control of dynamic systems with time delay. If the time delay is not explicitly included in the controller design, instability may occur.

이산치 신호를 이용한 PV시스템의 제어특성 (The Control Characteristics of PV System Using Discrete Data Signal)

  • 김동휘;백형래
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1999년도 전력전자학술대회 논문집
    • /
    • pp.93-96
    • /
    • 1999
  • Solar cell generate DC power from sunlight whose power is different at any instance according to condition of variables : insolation and temperature. In order to improve the system utility factor and efficiency of energy conversion, it is desirable to operate the PV system at maximum power point of solar cell under different condition. In this paper, Boost chopper is controlled it output voltage with a new discrete control algorithm for MPPT. PWM signal of DC-DC converter are generated with a 89C51 microcontroller. Switching frequency of DC-DC converter is set at 10KHz. Simulation and experimental results show that the PV system studied in this paper is always operated at maximum power point under different maximum power point of solar cells having stabilized output voltage waveform with relatively small ripple component

  • PDF

Discrete-Time Robust Guaranteed Cost Filtering for Convex Bounded Uncertain Systems With Time Delay

  • Kim, Jong-Hae
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제4권4호
    • /
    • pp.324-329
    • /
    • 2002
  • In this paper, the guaranteed cost filtering design method for linear time delay systems with convex bounded uncertainties in discrete-time case is presented. The uncertain parameters are assumed to be unknown but belonging to known convex compact set of polytotype less conservative than norm bounded parameter uncertainty. The main purpose is to design a stable filter which minimizes the guaranteed cost. The sufficient condition for the existence of filter, the guaranteed cost filter design method, and the upper bound of the guaranteed cost are proposed. Since the proposed sufficient conditions are LMI(linear matrix inequality) forms in terms of all finding variables, all solutions can be obtained simultaneously by means of powerful convex programming tools with global convergence assured. Finally, a numerical example is given to check the validity of the proposed method.

퍼지-랜덤 변수를 이용한 DES 모델링을 통한 실시간 전력 시스템의 성능 및 신뢰도 평가 (Evaluation of the Performance and Reliability of a Real-time Power System Described by a DES Model using Fuzzy-Random Variables)

  • 민병조;이석주;김학배
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권7호
    • /
    • pp.363-369
    • /
    • 2000
  • To flexibly evaluate performance and reliability of an electric power system in the aspect of the real-time system which is intrinsically characterized by stringent timing constraints fails catastrophically if its control input is not updated by its digital controller computer within a certain time limit called the hard deadline, we propose fuzzy-random variables and build a discrete event model embedded with fuzzy-random variables. Also, we adapt fuzzy-variables to a path-space approach, which derives the upper and lower bounds of reliability by using a semi-Markov model that explicitly contains the deadline information. Consequently, we propose certain formulas of state automata properly transformed by fuzzy-random variables, and present numerical examples applying the formulas as well.

  • PDF

INCORPORATING CONTEXT LEVEL VARIABLES TO IMPROVE OPERATION ANALYSIS IN STEEL FABRICATION SHOPS

  • Amin Alvanchi;SangHyun Lee;Simaan M. AbouRizk
    • 국제학술발표논문집
    • /
    • The 3th International Conference on Construction Engineering and Project Management
    • /
    • pp.1053-1059
    • /
    • 2009
  • Construction system modeling can enhance work performance by following the behaviors of a system. System behaviors may originate from physical aspects of a system, namely operation level variables, or from non-physical aspects of a system known as context level variables. However, construction system modelers usually focus on only one type of system variable (i.e., operation level or context level) which can lead to less accurate results. Hybrid modeling with System Dynamics (SD) and Discrete Event Simulation (DES) is one of the approaches that has been utilized to address this issue. In this research, an SD-DES hybrid model of a steel fabrication shop is developed, and the benefits of capturing context level variables together with operation level variables in the model are discussed.

  • PDF

자율제어시스템의 효과적인 시뮬레이션 모델링 형식론 (Effective Simulation Modeling Formalism for Autonomous Control Systems)

  • 장대순;조강훈;천상욱;이상진;박상철
    • 품질경영학회지
    • /
    • 제46권4호
    • /
    • pp.973-982
    • /
    • 2018
  • Purpose: The purpose of this study is to develop an effective simulation modeling formalism for autonomous control systems, such as unmanned aerial vehicles and unmanned surface vehicles. The proposed simulation modeling formalism can be used to evaluate the quality and effectiveness of autonomous control systems. Methods: The proposed simulation modeling formalism is developed by extending the classic DEVS (Discrete Event Systems Specifications) formalism. The main advantages of the classic DEVS formalism includes its rigorous formal definition as well as its support for the specification of discrete event models in a hierarchical and modular manner. Results: Although the classic DEVS formalism has been a popular modeling tool, it has limitations in describing an autonomous control system which needs to make decisions by its own. As a result, we proposed an extended DEVS formalism which enables the effective description of internal decisions according to its conditional variables. Conclusion: The extended DEVS formalism overcomes the limitations of the classic DEVS formalism, and it can be used for the effectiveness simulation of autonomous weapon systems.

다구찌방법을 이용한 컴퓨터원용 강건설계기법의 개발 (Development of Computer-Aided Robust Design (CARD) Technique Using Taguchi Method)

  • 이종원;김추호
    • 대한기계학회논문집
    • /
    • 제18권2호
    • /
    • pp.278-291
    • /
    • 1994
  • A computer-aided robust design (CARD) technique is developed to search for the design variables, optimal as well as robust in the sense of Taguchi method. The CARD technique can effectively handle inequality problems by employing the variable penalty method, and dynamic problems with many design variables and/or with mixed discrete and continuous variables. It is also capable of providing contributions of each design variables to the object funtion and information for future designs. As the illustrative examples, two dynamic systems, engine mounting system and in-line feeder, are treated.

모델링 불확실성을 갖는 이산구조 비선형 시스템을 위한 유한 임펄스 응답 고정구간 스무딩 필터 및 DR/GPS 결합항법 시스템에 적용 (FIR Fixed-Interval Smoothing Filter for Discrete Nonlinear System with Modeling Uncertainty and Its Application to DR/GPS Integrated Navigation System)

  • 조성윤;김경호
    • 제어로봇시스템학회논문지
    • /
    • 제19권5호
    • /
    • pp.481-487
    • /
    • 2013
  • This paper presents an FIR (Finite Impulse Response) fixed-interval smoothing filter for fast and exact estimating state variables of a discrete nonlinear system with modeling uncertainty. Conventional IIR (Infinite Impulse Response) filter and smoothing filter can estimate state variables of a system with an exact model when the system is observable. When there is an uncertainty in the system model, however, conventional IIR filter and smoothing filter may cause large errors because the filters cannot estimate the state variables corresponding to the uncertain model exactly. To solve this problem, FIR filters that have fast estimation properties and have robustness to the modeling uncertainty have been developed. However, there is time-delay estimation phenomenon in the FIR filter. The FIR smoothing filter proposed in this paper makes up for the drawbacks of the IIR filter, IIR smoothing filter, and FIR filter. Therefore, the FIR smoothing filter has good estimation performance irrespective of modeling uncertainty. The proposed FIR smoothing filter is applied to the integrated navigation system composed of a magnetic compass based DR (Dead Reckoning) and a GPS (Global Positioning System) receiver. Even when the magnetic compass error that changes largely as the surrounding magnetic field is modeled as a random constant, it is shown that the FIR smoothing filter can estimate the varying magnetic compass error fast and exactly with simulation results.