• Title/Summary/Keyword: discrete component

Search Result 188, Processing Time 0.026 seconds

REPRESENTATIONS OF SOLUTIONS TO PERIODIC CONTINUOUS LINEAR SYSTEM AND DISCRETE LINEAR SYSTEM

  • Kim, Dohan;Shin, Jong Son
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.933-942
    • /
    • 2014
  • We give a representation of the component of solutions with characteristic multiplier 1 in a periodic linear inhomogeneous continuous system. It follows from this representation that asymptotic behaviors of the component of solutions to the system and to its associated homogeneous system are quite different, though they are similar in the case where the characteristic multiplier is not 1. Moreover, the representation is applicable to linear discrete systems with constant coefficients.

Framework for Component-based Modeling/Simulation of Discrete Event Systems

  • Cho, Young-Ik;Kim, Jae-Hyun;Kim, Tag-Gon
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.10a
    • /
    • pp.484-484
    • /
    • 2001
  • The sophistication of current software applications results in the increasing cost fur software development time. The component-based software development framework is proposed to overcome the difficulty and time-consuming requirements by modularity and reusability. As is the general software case, a component-based simulation framework encourages the reusability of the real system model based on the modularity of the applied simulation methodology. This paper presents a component-based simulation environment that is based on the DEVS/COM run-time infrastructure. The DEVS (Discrete Event System Specification) formalism provides a formal modeling and simulation framework for the generic dynamic systems [1] and Microsoft's COM (Component Object Model) is one of the strongest competitor fur the component standard. The reusability by the DEVS/COM simulation environment saves model development time remarkably and component technology make simulator itself to be a subparts of real application.

  • PDF

3D Visualization of Discrete Event Simulation and Its Applications in Virtual Manufacturing

  • Zhong Yongmin;Yuan Xiaobu
    • International Journal of CAD/CAM
    • /
    • v.4 no.1
    • /
    • pp.19-32
    • /
    • 2004
  • This paper presents a new approach to create 3D visualization from discrete simulation results. This approach connects discrete event simulation directly to 3D animation with its novel methods that analyze and convert discrete simulation results into animation events to trigger 3D animation. In addition, it constructs a 3D animation framework for the visualization of discrete simulation results. This framework supports the reuse of both the existing 3D animation objects and behavior components, and allows the rapid development of new 3D animation objects by users with no special knowledge in computer graphics. This approach has been implemented with the software component technology. As an application in virtual manufacturing, visualizations of an electronics assembly factory are also provided in the paper to demonstrate the performance of this new approach.

A Transient Analysis in Bicycle Shifting using A Discrete Chain Model (이산화 체인 모델을 이용한 자전거 변속 과도상태 해석)

  • Kim, Jungyun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.36 no.4
    • /
    • pp.25-30
    • /
    • 2013
  • This article deals with the transient analysis in bicycle shifting using a discrete chain model. Among the various components of a bicycle, we focused in the power-transmissions on the contact points between the chain element and sprocket. And by imposing kinematic motions on the front and rear derailleurs, we analyzed the shifting mechanism for increasing the rotational speed of rear wheel. In order to build the dynamic analysis model, we first tore down the real bicycle and measured each component's design parameters. Then we made 3-dimensional CAD models for each component related to the power transmission of a bicycle. Using the converted 3-dimensional dynamic model for the simulation program, we performed non-shifting and shifting dynamic analysis. As a result, we investigated the dynamic behaviors of a discrete chain model focused on the interaction between the chain and sprocket wheel.

The impact of artificial discrete simulation of wind field on vehicle running performance

  • Wu, Mengxue;Li, Yongle;Chen, Ning
    • Wind and Structures
    • /
    • v.20 no.2
    • /
    • pp.169-189
    • /
    • 2015
  • To investigate the effects of "sudden change" of wind fluctuations on vehicle running performance, which is caused by the artificial discrete simulation of wind field, a three-dimensional vehicle model is set up with multi-body dynamics theory and the vehicle dynamic responses in crosswind conditions are obtained in time domain. Based on Hilbert Huang Transform, the effects of simulation separations on time-frequency characteristics of wind field are discussed. In addition, the probability density distribution of "sudden change" of wind fluctuations is displayed, addressing the effects of simulation separation, mean wind speed and vehicle speed on the "sudden change" of wind fluctuations. The "sudden change" of vehicle dynamic responses, which is due to the discontinuity of wind fluctuations on moving vehicle, is also analyzed. With Principal Component Analysis, the comprehensive evaluation of vehicle running performance in crosswind conditions at different simulation separations of wind field is investigated. The results demonstrate that the artificial discrete simulation of wind field often causes "sudden change" in the wind fluctuations and the corresponding vehicle dynamic responses are noticeably affected. It provides a theoretical foundation for the choice of a suitable simulation separation of wind field in engineering application.

A modified sliding mode controller for the position control of a direct drive arm

  • Lee, Jong-Soo;Kwon, Wook-Hyun;Choi, Kyung-Sam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.884-889
    • /
    • 1990
  • In this paper, a new hybrid position control algorithm for the direct drive arm is proposed. The proposed control is composed of discrete feedforward component and continuous feedback component. The discrete component is the nominal torque which approximately compensates the strong nonlinear coupling torques between the links, while the continuous control is a modified version of sliding mode control which is known to have a robust property to the disturbances of system. For the proposed control law, we give sufficient condition which guarantees the bounded tracking error in spite of the modeling errors, and the efficiency of the proposed algorithm is demonstrated by the numerical simulation of a three link manipulator position control with payloads and parameter errors.

  • PDF

Decomposition of Wave Components in Sea Level Data using Discrete Wavelet Transform (이산형 웨이블릿 변환을 통한 조위 자료 내 파고 성분 분리)

  • Yoo, Younghoon;Lee, Myungjin;Lee, Taewoo;Kim, Soojun;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.21 no.4
    • /
    • pp.365-373
    • /
    • 2019
  • In this study, we investigated the effect of wave height in coastal areas using discrete wavelet transform in Taehwa river basin in Ulsan. Through the decomposition result of tide data using daubechies level 7 wavelet and Curve Fitting Function, we confirmed that detail components of d3 and d4 were semidiurnal and diurnal components and approximation component(a6) was the long period of lunar fortnight constituent. The decomposed tide data in six level was divided into tide component with periodicity and wave component with non-periodicity using autocorrelation function and fourier transform. Finally, we confirmed that the tide component is consisted 66% and wave component is consisted 34%. So, we quantitatively assessed the effect of wave on coastal areas. The result could be used for coastal flood risk management considering the effect of wave.

A Study on Modeling of Fighter Pilots Using a dPCA-HMM (dPCA-HMM을 이용한 전투기 조종사 모델링 연구)

  • Choi, Yerim;Jeon, Sungwook;Park, Jonghun;Shin, Dongmin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.1
    • /
    • pp.23-32
    • /
    • 2015
  • Modeling of fighter pilots, which is a fundamental technology for war games using defense M&S (Modeling & Simulation) becomes one of the prominent research issues as the importance of defense M&S increases. Especially, the recent accumulation of combat logs makes it possible to adopt statistical learning methods to pilot modeling, and an HMM (Hidden Markov Model) which is able to utilize the sequential characteristic of combat logs is suitable for the modeling. However, since an HMM works only by using one type of features, discrete or continuous, to apply an HMM to heterogeneous features, type integration is required. Therefore, we propose a dPCA-HMM method, where dPCA (Discrete Principal Component Analysis) is combined with an HMM for the type integration. From experiments conducted on combat logs acquired from a simulator furnished by agency for defense development, the performance of the proposed model is evaluated and was satisfactory.

Effects of Fracture Tensor Component and First Invariant on Block Hydraulic Characteristics of the 2-D Discrete Fracture Network Systems (절리텐서의 성분 및 일차불변량이 2-D DFN 시스템의 블록수리전도 특성에 미치는 영향)

  • Um, Jeong-Gi
    • Economic and Environmental Geology
    • /
    • v.52 no.1
    • /
    • pp.81-90
    • /
    • 2019
  • In this study, the effects of fracture tensor component and first invariant on block hydraulic behaviors are evaluated in the 2-D DFN(discrete fracture network) systems. A series of regression analysis is performed between connected fracture tensor components and block hydraulic conductivities estimated at every $30^{\circ}$ hydraulic gradient directions for a total of 36 DFN systems having various joint density and size distribution. The directional block hydraulic conductivity seems to have strong relation with the fracture tensor component estimated in direction perpendicular to it. It is found that an equivalent continuum approach could be acceptable for the 2-D DFN systems under condition that the first invariant of fracture tensor is more than 2.0~2.5. The first invariant of fracture tensor seems highly correlated with average block hydraulic conductivity and can be used to evaluate hydraulic characteristics of the 2-D DFN systems. Also, a possibility of upscaling using the first invariant of fracture tensor for the DFN system is addressed through this study.