Framework for Component-based
Modeling/Simulation of Discrete Event Systems

Young-Ik Cho, Jae-Hyun Kim and Tag Gon Kim

Systems Modeling Simulation Lab
Department of Electrical Engineering & Computer Science
KAIST
Daejon, KOREA
E-mail: {yicho, jhkim}@smslab.kaist.ac kr, tkim@ee kaist.ac.kr

ABSTRACT

The sophistication of current software applications results in
the increasing cost for software development time. The
component-based software development framework is
proposed to overcome the difficulty and time-consuming
requirements by modularity and reusability. As is the
general software case, a component-based simulation
framework encourages the reusability of the real system
model based on the modularity of the applied simulation
methodology.

This paper presents a component-based simulation
environment that is based on the DEVS/COM run-time
infrastructure. The DEVS (Discrete Event System
Specification) formalism provides a formal modeling and
simulation framework for the generic dynamic systems [1]
and Microsoft’s COM (Component Object Model) is one of
the strongest competitor for the component standard. The
reusability by the DEVS/COM simulation environment
saves model development time remarkably and component
technology make simulator itself to be a subpart of real
application,

KEYWORDS

Component-based Modeling and Simulation, Models
Reusability, Binary Reusable Modeling, Modeling in Multi-
languages, DEVS/COM

1 INTRODUCTION

Constant innovation in computing technology made
sophisticated applications available to users and such
sophistication has brought with it many problems for the
system designer. So a methodology is required to reduce the
procedure of the development process by reusing existing

module or purchasing ready-made sub-products that can
easily be integrated into their own framework. The
component-based software development framework, such as
COM (Component Object Model), JavaBean and CORBA
(Common Object Request Broker Architecture) is such a
methodology to overcome that problem.

Discrete event simulation is a powerful tool for system
design and the DEV'S (Discrete Event System Specification)
formalism proposed by Zeigler [2] provides sound formal
modeling and simulation framework for the generic system.
There are several approaches each of which enables a DEVS
(Discrete Event System Specification) framework to a
component capability. The first approach is based on a Java
component technology {3], which implements a visual
modeling and simulation environment. The second approach
is DEVS/CORBA execution environment [4] that focused
on the distributed simulation of the network-friendliness of
the component technology.

Both DEVS-JavaBean and DEVS/CORBA frameworks
utilize the potential of component technology and their
feature is strongly concerned with the component
technology that each framework adopted. In this paper a
suggested component-based simulation environment is
based on the Microsoft’'s COM run-time infrastructure.
COM is currently the strongest competitor on the
component technology and it is a sound framework to
interoperate under the many co-existing different
programming language as a reusable binary component and
its network friendliness may provide further extensibility for
an application to be extended to a distributed environment.
Combining the advantages of DEVS and COM may provide
heterogeneous and reusable modeling and simulation
environment.

In this paper, DEVS/COM component simulation
environment is suggested to meet component reusability
requirement. To set the stage the brief overview on the
component technology and model reusability is provided.

- 484 -

We then proceed to the design of DEVS/COM simulation
environment with simple banking example. Some
discussion about overall reusability will be followed.

2 COMPONENT TECHNOLOGY AND
SIMULATION MODELS REUSABILITY

2.1 Component Technology and Supperting Runtime
Infrastructures

Traditional software development requires application
executables to be compiled and linked with their
dependencies. Every time a developer wants to use a
different processing logic or new capabilities, he or she
needs to modify and recompile the primary application to
support them. To manage with the rapid model change, the
reuse of system components is strongly required to improve
the software development productivity and quality.

Software components are binary units that are
composed without modification [5]. Even though different
definitions about the components are found on every other
literature, a software component must meet the following
properties
® A component is a unit of independent deployment
® A component is a unit of third-party composition
@ A component has no persistent state

These properties mean that a software component is a
unit of a reusable piece of software without any knowledge
on the internal structure.

There are several component technologies that compete
to gain the name of the standards. The three important
players for component world are COM (Component Object
Model) proposed by Microsoft, JavaBean by Sun and
CORBA (Common Object Request Broker Architecture) by
OMG (Object Management Group). The each component
approach are summarized in the following table:

Table 1: Characteristics of component approach

COM CORBA JavaBeans
Platform Microsoft’s | Any Any

Windows'
Programming | Any Any Java
Language
Approach to | Application | Distributed | Programmi
component® data environmen | ng language

exchange |t

format

' Microsoft’s COM is available on other platforms like
Solaris and Macintosh but it is not widely used on such a
platform

2 < Approach to component’ means ‘from where these
technologies are originated’

The benefits from the component software, as
embodied in the COM, are as follows: [6]
Abstraction and black-box encapsulation
Extensibility
Reusability
Cross language
Location independence

2.2 Models Reusability in
Modeling/Simulation

Component-Based

A number of paradigms and programming methodologies
have been offered to develop reusable and extensible code.
One such paradigm, object-oriented methodology, has been
received favorably in general. Under this paradigm, certain
sets of related features are grouped in a single unit called an
object and it creates an abstraction layer that simplifies
many systems.

On the traditional procedure for modeling, the
reusability is achieved by obtaining the part of the source
code of the concern. On some case reusability is achieved
by sharing some of the program module in a library form
and program language-specific header file. With the
innovation of the object-oriented paradigm, some aspects of
the system can be considered as an object to be reused and
that results in great reduction of source code [7]. But as the
increasing size of the overall system and the number of the
system designer involved, it is harder to knit each module to
make a whole picture. Tn the object oriented development
procedure, change on some object may propagate to other
object and the overall system must be built in a synchronous
fashion to avoid this problem.

The component-based development framework
overcomes this development in large problem by immutable
interface —a contract with other component cannot be
modified- and binary form of component. Binary form
provides true information hiding on the internal structure of
the component that results in true black-box encapsulation
and make it possible for any programming language to
make a component — language independence.

The full feature of the object-oriented modeling
framework can be used in the component-based system
designing and a proposed simulation model can be easily
distributed as a form of a component. While reusing an
object in the object-orient framework still applies in the
component inside, the model component itself can be reused
in a simple Lego-block way.

3 DEVS/COM ENVIRONMENT

A brief overview on the DEVS formalism is introduced in
section 3.1 and architecture and implementation of the
DEVS/COM environment will be followed. Some capability

- 485 -

on the cross language model implementation is discussed on
section 3.4.

3.1 DEVS Formalism: A Brief Overview

The DEVS (Discrete Event System Specification)
formalism introduced by Zeigler is a set-theoretic formalism
and it provides a means of modeling discrete event system
in a hierarchical, modular way. With this DEVS formalism,
we can perform modeling more easily and correctly by
decomposing large system into component models and
specify the coupling between them. There are two kinds of
model in DEVS formalism.

Atomic model is the basic model and has specification
for the dynamics of the model. It describes the behavior of a
component, which is indivisible, in a timed state transition
level. Formally, a 7-tuple specifies an atomic model M as
follows

AM = <Xa Ya Sy 8im3 6tlea A” ta>

Where

X : input events set

Y : output event set

S : sequential states set

Sint: S 2 S is the internal transition function

8int: Q x X -2 is the external transition function, where
Q = {(s,e)|s€S, 0<e<ta(s)} is the total state set
e is the time elapsed since last transition

A :S > Y is the output function

ta:S> R+0,‘,, is the time advance function, where

R'g is the set positive reals with 0 and

The four elements in the 7-tuple, namely 8y, Sexi, A and ta,

are called characteristic functions.

The second form of the model, called a coupled model (or
coupled DEVS), tells how to couple several component
models together to form a new model. This kind of model
can be employed as a component in a larger coupled model,
thus giving rise to the construction of complex models in a
hierarchical fashion. The DEVS coupled model is defined as
follows.

CM=<X, Y, M, EIC, EOC, IC, SELECT >

Where

X : input events set

Y : output events set

M : set of all component models in DEVS

EIC ¢ X x ;X : external input coupling relation

EOC < u;Y; x Y : external output coupling relation

1C ¢ U;X; x;Y; : internal coupling relation

SELECT : 2™ - ¢ > M is a function which chooses one
model when more than 2 models are scheduled
simultaneously.

3.2 Architecture of DEVS/COM environment

The Component Object Model (COM) is a Microsoft’s
component software architecture that allows applications
and systems to be built from components supplied by
different software vendors. COM specifies a component
interface definition, which is independent from
programming languages, such as C, C++, Java, and Visual
Basic.

On the various reusability approaches like component
composition and code generation, both DEVS framework
and COM runtime infrastructure utilize component
composition way. The hierarchical and modular
specification of the DEVS formalism and the binary
component of the COM component can be onto
correspondence. That is, DEVS abstract simulator (Figure
1) and user model is directly correlated to a COM
component, as there is no alteration on the simulation
algorithm or message structure.

v
M123 C:M123
T request 7 T
Mi M23 SMi1 C:M23
M2 M3 acknowledge S:M2 S:M3

Models as passive elements

Figure 1: DEVS abstract simulator

On the DEVS abstract simulator both simulation user
model and simulator/coordinator are reusable DEVS object,
simulator is one to one corresponding to the component
DEVS simulator, as is user model to the model component.
However user model may be a single component or user
model itself may utilize the reusability to be consisted of
several sub model components.

3.3 DEVS Models Implementation in DEVS/COM

As component DEVS user model also is a component, an
implementation of the user model is somewhat sophisticated
and it can be some overhead to modeler. Like the
inheritance of the object-oriented framework, COM
supports a reusability and extensibility by a kind of binary
inheritance called containment and aggregation even though
COM does not support strict-sense implementation
inheritance.

A basic skeleton model is provided to reduce the
modeling load and modeler use the basic model by either
containment or aggregation. Functions by basic skeleton
model for the DEVS atomic and coupled model are as
followed (Table 2, Table 3). The function names are not

- 486 -

Simulators/Coordinators as active processors

changed in the comparison with DEVS object oriented
simulator.

Table 2: Component Simulator API for Atomic Model

Atomic .
Model Function
X AddInport (“Input”);
Y AddOutport (“Output”) ;
S Statevar.put (“State”,”Initial”};
5 public void ExtTransFn(Variant stateVar,
ext double timeE, Messages msq);
Sint public void IntTransFn(Variant stateVar)
A public void OutputFn(Variant stateVar,
Messages msg)
ta public timeType TimeAdvanceFn (Variant
statevar)

Table 3: Component Simulators API for Coupled Model

CI\(/);:)%I:;] Function
X AddInport (“Inport”);
Y AddOutport (“Output”) ;
M Statevar.get (“State”);
EIC AddCoupling(null, “sport”, dst, "“dport);
EOC AddCoupling{src, “sport”, null, “dport):;
IC addCoupling{src, “sport”, dst, “dport):
GetPriorit ;
SELECT SetPrioritzi)int p);

3.4 Multi-Language Support

It is unrealistic to believe that any single programming
language is best adequate for every task. For example,
visual basic can hide sophisticated simulation model
initialization code but results in inevitable performance
degradation. Programming language independence on the
COM framework may elevate the system modeling
performance by adopting easy-to use program language
such as java to implement the coupled mode! and
performance-critical C++ language to an overall system
bottleneck component. Figure 2 shows how the system
interoperating with other model in a different language.

Model e Model Model
(C+) (Java) (Web)
8 8 8
Q 0 Q

component DEVS simulator

Figure 2: Cross Language Interoperability

Some comments about the rightmost model named Web are
followed. Microsoft proposed some means of
interoperability between component on the web server and
client. This implies that a web-based simulation client can
use model components without any modification on
component even though it is not possible to make a new
model component on the worldwide web

4 COMPONENT-BASED
MODELING/SIMULATION IN DEVS/COM

In this section we discuss how to use component-based
simulation framework to do a discrete event simulation by
an example and the benefits of the component-based
environment.

4.1 Example

This section presents a simple Banking example, which
show how the component simulator works. The customer is
generated from the EF (environment frame) to the Bank if
the Bank is free and the system can be regarded as a single-
size buffer queue system. The DEVS coupled model of the
example is depicted as Figure3.

BankSim (Visual Basic)

Bank End
(C++)

Customer

(Java)

Figure 3: Banking System

Each of the coupled models is implemented as a Visual
Basic, Java, and C++ programming language. Every
coupled or atomic model is a binary COM component and
each model can be implemented in any programming
language that support COM runtime infrastructure.

4.2 Some discussion

By adopting the component technology to the DEVS
simulation framework, reusing of the existing model
component like various queue models may reduce the
overall modeling time and binary component specification
results in the true black-box encapsulation of the internal

~ 487 - -

structure of the component and programming language
independence. Component-based development framework is
truly asynchronous that each of the model components can
be developed independently in the large scale. But on the
small-scale software, component-based approach does not
show a specific strong point over the object-oriented
approach in the development framework.

Besides the user model component, simulator is also a
component and can be reused. On some case like web-based
simulation, simulator component is re-used as a component
of the whole system. Some large-scale software for
imitating the real world system may re-use a simulator
component and it is another point of the reusability — model
reusability vs. simulator reusability.

5 CONCLUSION AND FUTURE WORK

In this paper we have presented a simulation environment
for discrete event modeling and simulation using COM
component technology. By employing DEVS/COM runtime
environment, the following benefits can be expected. First,
COM technology is an industry standards enabling
integration of the modeling in the multi-language. Secondly,
various system architectures can be a ready-to-deploy
component that a user may re-use it.

A component approach brings many benefits to the
DEVS framework with some side effects. One is an
interface overhead for a component and the other is
performance degradation. A quantitative measure on the
performance degradation and the improved reusability is
need to the systematic comparison between component-
based methodology and object-oriented methodology.

Like other network-oriented component technologies,
COM evolves to the DCOM (distributed COM) and COM+
to meet the current trends on the Internet. The model and
simulator component may be easily used in the network
environment with least efforts. The comparison between
DEVS/CORBA and DEVS/HLA [8] (High Level
Architecture) environment will be need on that time.

REFERENCE

[1] B. P. Zeigler, Multifacetted Modeling and Discrete
Event Simulation. Academic Press. 1984

[2] B.P. Zeigler, H. Praehofer and T.G. Kim, 2000. Theory
of Modeling and Simulation, 2 edition, Academic
Press

[3] Yung-Hsin Wang and Szu-Hsuan Ho, “Implementation
of a DEVS-JavaBean simulation environment”,
Proceedings of Simulation Symposium, 2001. 34th
Annual, pp333 -338

[4] Bemard P. Zeigler, Doohwan Kim, and Stephen J.
Buckley, “Distributed supply chain simulation in a

(5]
(6]
(71
(8]

- 488 -

DEVS/CORBA execution environment”, Proceedings
of the 1999 Winter Simulation Conference, ppl1333 —
1340

Clemens Szyperski, Component Software, ACM Press,
New York

Tradeep Tapadiya, COM+ Programming, Prentice Hall
PTR, Upper Saddle River, NJ 07458

Ted J. Biggerstaff and Alan J. Perlis, Software
Reusability, ACM Press, New York

Zeigler, B.P. Implementation of the DEVS Formalism
over the HLA/RTI: Problems and Solutions. In SIW.
1999. Orlando, FL.

