여러개의 종으로 구성된 모집단으로부터 일정 크기의 표본을 추출한 경우 다음에 관측된 종이 신종일 확률에 대한 추정량으로 가장 널리 사용되어 온 것은 Good의 추정량이다. 본 논문에서는 종의 총 수효에 관한 사전정보가 존재할 경우 Good의 추정량에 대한 대안으로서 새로운 경험적 베이지안 추정량을 제안하였다. 모집단이 절단 기하분포를 따를 경우의 소표본 시뮬레이션 결과는 새로운 추정량의 편의가 별로 크지 않으며 RMSE가 Good의 추정량보다 작음을 보여 주었다.
The Cuckoo search (CS) algorithm is a simple and efficient global optimization algorithm and it has been applied to figure out large range of real-world optimization problem. In this paper, a new formula is introduced to the discovering probability process to improve the convergence rate and the Tournament Selection Strategy is adopted to enhance global search ability of the certain algorithm. Then an approach for structural damage identification based on modified Cuckoo search (MCS) is presented. Meanwhile, we take frequency residual error and the modal assurance criterion (MAC) as indexes of damage detection in view of the crack damage, and the MCS algorithm is utilized to identifying the structural damage. A simply supported beam and a 31-bar truss are studied as numerical example to illustrate the correctness and efficiency of the propose method. Besides, a laboratory work is also conducted to further verification. Studies show that, the proposed method can judge the damage location and degree of structures more accurately than its counterpart even under measurement noise, which demonstrates the MCS algorithm has a higher damage diagnosis precision.
About two thirds of the naturally occurring antibiotics have been discovered from actinomycetes. Therefore, the probability of discovering further new antibiotics from actinomycetes is declining as many known metabolites are isolated repeatedly. However, various efforts leave been made in order to enhance the probability of discovering novel compounds. In the present study, we have developed new screening strategies based on the antibiotic biosynthetic pathway, and the genetic information, utilizing polymerase chain reaction. We have selected macrolide type polyketides. In order to divide the ansamycin group antibotic of macrolide type polyketides, we have selected 3-amino-5-hydroxybenzoic acid (AHBA) moiety which contains a biosynthetically unique structural element in the group as a target molecules. Oligonucleotide primers were designed to amplify DNA fragments of macrolide type polyketide synthase and AHBA synthase genes from fourteen actinomycetes species. This method was successfully applied to all three of the known macrolide type polyketide produccing actinomycetes tested. In addition, it also identified the presence of potential macrolide type polyketide producing genes from seven actinomycetes that were known to produce none of macrolide type polyketides, and AHBA biosynthetic genes in one actinomycetes. This technique is potentially useful for the screening of new antibiotices and cloning of their biosynthetic genes.
본 논문에서는 방대한 웹 자원의 연결성을 더욱 증가시키기 위해 영어 위키피디아 문서로부터 한국어 위키피디아 문서로의 교차언어 링크를 자동으로 탐색하는 방법을 제안한다. 어구의 링크확률을 대략 추정하여 사용하던 기존의 방법에 비해, 본 연구에서는 위키피디아 문서 집합으로부터 추출한 제목 목록과 링크 확률과 같은 다양한 정보들과 개체명 인식 결과를 함께 사용하여 링크가 걸릴 앵커 후보를 선택한다. 앵커 후보를 한국어 대역어로 번역한 후, 대역어에 가장 적합한 한국어 웹문서를 찾아 교차언어 링크로 설정하게 된다. 실험한 결과 MAP 수치로 0.375를 얻었다.
여러 개의 종으로 구성된 모집단에서 일정 크기의 표본을 추출하였을 경우, 다음차례에 뽑힐 종이 새로운 종이 될 조건부확률의 추정량으로서 가장 널리 사용되어 온 것은 Good(1953)이 경험적 베이지안 접근법을 사용하여 제안한 비모수추정량이다. Clayton과 Frees(1987)는 Good의 추정량에 대한 대안으로서 비모수최우추정량을 제안하고, 시뮬레이션을 통해 모집단이 비교적 불균일할 경우 자신들이 제안한 추정량이 Good의 추정량보다 평균제곱오차가 작음을 보여 주었고, Lee(1989)는 모집단이 균등분포에 비교적 가깝지 않은 절단기하분포를 따를 때 이를 점근적으로 규명하였다. 그러나 비모수최우추정량은 상당한 편의를 지니고 있는데, 본 연구에서는 이 편의의 일부를 보정한 새로운 추정량이 대부분의 모집단분포 형태에 있어 비모수최우추정량보다 평균제곱오차가 작으며, 모집단이 균일분포에 아주 가까운 경우를 제외하고는 Good의 추정량보다도 평균제곱오차가 작음을 점근적으로 규명하고, 이를 소표본 시뮬레이션을 통하여 확인하였다.
Most companies have been increasing temporary work projects to maximize the usage of their resources. They also have been developing the effective techniques for analyzing and managing the state of the projects. In order to monitor the state of a project in real-time and predict the project's future state more accurately, this paper suggests the Bayesian Network (BN) as a tool for discovering the causes of project risk and presenting the failure probability of the project. The proposed BN modeling method with consideration of the Earned Value Management (EVM) method shows how to induce the predictive and conditional probability of the risk occurrence in the future. The advantages of the suggested model are (1) that the cause of a project risk can be easily figured out via the BN, (2) that the future value of the project can be sufficiently increased by updating relevant components of the project, and (3) that more credible prediction can be made in the similar and future situation by using the data obtained in current analysis. A numerical example is also given.
Kwon, Na Yeon;Kim, Jang Il;Dollein, Richard;Seo, Weon Joon;Jung, Yong Gyu
International journal of advanced smart convergence
/
제2권1호
/
pp.36-41
/
2013
Decision-making is to extract information that can be executed in the future, it refers to the process of discovering a new data model that is induced in the data. In other words, it is to find out the information to peel off to find the vein to catch the relationship between the hidden patterns in data. The information found here, is a process of finding the relationship between the useful patterns by applying modeling techniques and sophisticated statistical analysis of the data. It is called data mining which is a key technology for marketing database. Therefore, research for cluster analysis of the current is performed actively, which is capable of extracting information on the basis of the large data set without a clear criterion. The EM and K-means methods are used a lot in particular, how the result values of evaluating are come out in experiments, which are depending on the size of the data by the type of distance-based and probability-based data analysis.
In this paper, in order to identify and recognize attack patterns, we propose a Bayesian classification using frequent patterns. In theory, Bayesian classifiers guarantee the minimum error rate compared to all other classifiers. However, in practice this is not always the case owing to inaccuracies in the unrealistic assumption{ class conditional independence) made for its use. Our method addresses the problem of attribute dependence by discovering frequent patterns. It generates frequent patterns using an efficient FP-growth approach. Since the volume of patterns produced can be large, we propose a pruning technique for selection only interesting patterns. Also, this method estimates the probability of a new case using different product approximations, where each product approximation assumes different independence of the attributes. Our experiments show that the proposed classifier achieves higher accuracy and is more efficient than other classifiers.
Journal of the Korean Data and Information Science Society
/
제26권4호
/
pp.857-864
/
2015
데이터 마이닝은 다양한 형태의 방대한 데이터 집합으로부터 보이지 않는 지식이나 새로운 법칙을 발견한 후, 이를 바탕으로 의사결정 등을 위한 정보로 활용하고자 하는 것이다. 데이터 마이닝 기법중의 하나인 군집 분석은 거리 또는 유사성 측도를 이용하여 집단을 분류하고, 구분된 각 집단의 특성을 파악하기 위한 기법이다. 본 논문에서는 주변 확률이 일부 포함된 확률적 흥미도 측도 기반의 유사성 측도들인 Peirce I, Peirce II, Cole I, Cole II, 그리고 이들을 응용한 Park I 및 Park II에 대한 대소 관계를 수식의 증명뿐만 아니라 예제 데이터에 의해서도 규명하였다. 그 결과, Cole I과 Cole II의 측도를 동시에 고려한 Loevinger 측도가 기존의 측도들 중에서는 상한이 되나 Park I 및 Park II를 함께 고려했을 경우에는 동시발생비율, 동시 비발생비율, 그리고 두 가지 형태의 불일치비율의 크기에 따라 변한다는 사실을 확인하였다.
브로드캐스팅은 한 노드가 모든 노드들에게 패킷을 전달하는 과정으로, 모바일 애드 혹 네트워크(MANET)에서 경로 탐색과 제어 정보 메시지 전송과 같은 서비스를 위하여 많이 사용되는 기본 작업이다. 본 논문에서는 MANET에서 송수신 노드 사이의 이격 비율과 노드 밀집도에 따라 동적으로 재전송 확률 값을 구하는 브로드캐스팅 기법을 제안한다. 이격 비율은 송수신 노드사이의 거리와 무선 전파의 전달 거리에 대한 비율을 계산하며, 노드 밀집도는 1-홉 단위의 이웃 노드의 수를 계산한다. 패킷을 수신한 노드는 송신노드로부터의 이격 비율과 자신의 노드 밀집도을 고려하여 재전송 확률을 결정하는데, 송신자에 가까운 노드와 노드 밀집도가 높은 노드는 낮은 재전송 확률 값을 부여하여 패킷의 조기 소멸을 통해 재전송 패킷의 수를 줄이도록 한다. 플러딩 기법과 고정된 확률 값 기법과의 성능 비교를 통하여 제안 기법이 다른 방법보다 우수한 성능을 보여주었는데, 제안 기법은 플러딩에 비하여 30% 이상의 패킷 전송을 감소시킬 수 있었으며, 96%에 가까운 패킷의 도착율을 보여주었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.